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PREFACE

This supplement provides sample answers to most of the unanswered exercises in
Logic: The Basics (Routledge, 2010).1 We skip a few exercises, those for which
the answers are plainly given in the main body of the book. Chapters 1-12 of
this supplement correspond to Chapters 1-12, respectively, of Logic: The Basics.

In addition to answers to exercises, we briefly present the idea of so-called
tableau systems (see Ch. 13), and in turn present adequate tableau systems for
the various logics discussed in Logic: The Basics. These tableau systems can be
— and their ‘reason for being’ is that they be — useful in figuring out what follows
from what according to a given logical theory (i.e., figuring out what arguments
are valid according to a given logical theory).

If you find typos or errors of any sort, please contact us via email:

jc.beall@uconn.edu and davewripley@gmail.com
Suggestions for other supplemental material are welcome.

Jc Beall & David Ripley
Storrs & Melbourne
December 2010

Thttp://www.routledge.com/books/details/9780415774994/.
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PART I

BACKGROUND IDEAS






Consequences

We provide examples of answers to problems in exercise 7. (Later chapters pro-
vide answers to more of the given chapter’s problems.) Georg Brun [GB] and
Tim Rugalsky [TR] provided useful notes on these answers that we herein use.

One important note, in general, is worth emphasizing from the start, a point
that affects many exercises and runs throughout the book: the sometimes not-
easy-to-see-quickly distinction between being untrue in a case and being false in
a case. The general recipe for validity that is used throughout the book is given in
terms of the former notion, not the latter. So, for example, nothing in the recipe
for validity requires that a sentence be false-in-situation-c simply because it is
untrue-in-c. Whether this ‘distinction’ ought to collapse is a hard, substantial
issue in philosophical logic: it concerns the logical behavior of negation (and one’s
theory of falsity, etc.). These issues are too hard for this book, but they are some
of the issues that the book is intended to spark as students get a feel for some
standard philosophical logics and, importantly, get a taste of logical theorizing
on different fronts.!

With respect to exercise 7, it is important to have students be clear on the
task—for example, specifying, as clearly as possible, what notion of possibility
they assume in their answer(s). That possibilities are ‘situations’ of which we can
coherently conceive is one natural thought, but there are many—many—other
notions one might have. What is important at this stage is that students be clear
about what notion they’re assuming. (We highlight this in 7b.)

Exercises

1. What is an argument?

2. What is a valid argument?
3. What is a sound argument?
4

. What is the general ‘recipe’ for defining logical consequence (or validity)?
What are the two key ingredients that one must specify in defining a con-
sequence relation?

1Perhaps, as Georg Brun noted in correspondence, this important point concerning falsity
in a case and untruth in a case should’ve been emphasized more in the main body of the text
in Chapter 1. We—well, Beall—decided against this, thinking that too many distinctions from
the start would be too much. The distinction is gently introduced in an exercise in Chapter
2, and then explicitly discussed in Chapters 4—6, where it plays a crucial role. Whether Beall
made the right pedagogical decision is an open question. We flag the point here, should your
students require a discussion earlier than Chapter 2 or Chapter 4.



Consequences

5. Consider the ‘necessary consequence’ relation, which takes cases to be pos-
sibilities. Assume, as is reasonable (!), that our actual world is possible—
that is, that whatever is true (actually true) is possibly true. Question: on
this account of logical consequence, are there any sound arguments that
have false conclusions? If so, why? If not, why not?

Answer. This is sufficiently answered in Sample Answers.

6. As noted in the chapter, ‘if and only if’ (which is often abbreviated as
‘iff’) expresses two conditionals: ‘A iff B’ expresses both of the following
conditionals.?

e If A, then B.
e If B, then A.
For our purposes, a biconditional ‘A iff B’ is true so long as A and B are
either both true or both false (and such biconditionals are false otherwise).
With this in mind, consider the necessary consequence relation. Is the
following argument valid (where, here, validity is necessary consequence)?
If it is valid—if its conclusion is a necessary consequence of the premises—
explain why it is valid. If not, explain why not.
(a) Max is happy if and only if Agnes is sleeping.
(b) Agnes is sleeping.
(¢) Therefore, Max is happy.
What about the following argument?
(d) Max is happy if and only if Agnes is sleeping.
(e) Agunes is not sleeping.
(f) Therefore, Max is not happy.

Answer. This is sufficiently answered in Sample Answers.

7. Using the ‘necessary consequence’ account of validity, specify which of the
following arguments are valid or invalid. Justify your answer.
(a) Argument 1.
i. If Agnes arrived at work on time, then her car worked properly.
ii. If Agnes’s car worked properly, then the car’s ignition was not
broken.
iii. The car’s ignition was not broken.
iv. Therefore, Agnes arrived at work on time.
Answer [GB]. On our necessary consequence account of validity, this
is not a valid argument. To show this, we have to provide a counterex-
ample; that is, a situation we can coherently conceive of, in which (iv)
is not true, but (i)—(iii) all are. Such a situation may be characterized

2Strictly speaking, what is expressed is the ‘conjunction’ of the two conditionals, but we
leave the notion of conjunctions for the next chapter.
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as follows: (i) we assume that there is no other way for Agnes to ar-
rive at work on time, except by using her properly working car. (ii)
we also assume that Agnes’s car has a ‘normal’ engine that needs a
functional ignition to work properly (it is, for example, no electromo-
bile or diesel); so (ii) is true as well. But even if we further assume
that (iii) is true and her car’s ignition is not broken, there are still
other possible causes for her not to arrive at work on time (her car
has run of petrol, the road is blocked, she does not feel like going to
work). In these cases, (iv) is not true.

Argument 2.

i. Either the sun will rise tomorrow or it will explode tomorrow.
ii. The sun will not explode tomorrow.
iii. Therefore, the sun will rise tomorrow.

Answer [TR]. There are different answers that one might give, depend-
ing on one’s notion of possibility. Here are some. [NB: one could also
assume an exclusive use of ‘or’, which would change things. Through-
out these supplemental notes and the book itself, we expect students
to use an inclusive reading of ‘or’.]

i. 7b is valid. Proof: consider as possible circumstances all those in
which exactly one of the following is true: the sun will explode
tomorrow; the sun will not explode tomorrow. In this interpre-
tation, when one is true the other is false, and vice versa. Now
consider any possibility in which (i) and (ii) are true. Since (ii) is
true, it must be false that the sun will explode tomorrow. Then,
for (i) to be true, it must be the case that the sun will rise to-
morrow. Therefore, under this interpretation of what is possible,
the argument is valid.

ii. 7b is invalid. Counterexample: consider the possible case in which
the sun explodes at the precise boundary in time between today
and tomorrow. Interpret that moment as both tomorrow and to-
day (which is not tomorrow). Thus the sun will explode tomorrow,
making premise (i) true. Also, the sun explodes today, which is
not tomorrow, making premise (ii) true. Finally, since the sun has
exploded long before sunrise, it will not rise tomorrow, making
the conclusion false. Thus, under this interpretation of what is
possible, the argument is invalid.

iii. 7b is vacuously valid. Explanation: under several interpretations
of what is ‘possible’, it is impossible for both premises to be true.
(In the following examples, it is also impossible for the conclusion
to be true, but this happens to be irrelevant.)

e e.g. It is not possible for the sun literally to ‘rise.” We see it
on the horizon due to the earth’s rotation.
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e c.g. At the earth’s poles, there are seasons in which the sun
does not rise at all (neither does it set). If I am located at a
pole, I might reasonably define possible cases as those which
I experience.

In both examples, ‘The sun will rise tomorrow’ cannot be true
under any possible circumstance. Thus, for any possible case in
which premise (ii) is true, premise (i) is false. That is, there is no
possible case in which all the premises are all true. Thus (vacu-
ously), there is no possible case in which the premises are all true
but the conclusion is false. The argument satisfies the definition
of validity—but only in a technical, vacuous sense.

(¢) Argument 3.
i. If Max wins the lottery, then Max will be a millionaire.
ii. Max will not win the lottery.
iii. Therefore, Max will not be a millionaire.
Answer. [TR] The argument is invalid. Counterexample: Max will not
win the lottery, but Max is a millionaire due to inheritance.

(d) Argument 4.

i. If Beetle is an extraterrestrial, then Beetle is not from earth.

ii. Beetle is an extraterrestrial.

iii. Therefore, Beetle is not from earth.
Answer [TR]. The argument is valid. Consider any possible circum-
stance in which premises (i) and (ii) are both true. Then it is true that
Beetle is an extraterrestrial (from ii). Since Beetle is an extraterres-
trial, then Beetle is not from earth (from i). Thus Beetle is not from
earth, and the conclusion is true.

Sample answers

Answer 5. On the necessary-consequence sense of ‘validity’ (the sense in ques-
tion), an argument is valid iff every possibility (e.g., possible circumstance) in
which the premises are all true is one in which the conclusion is true. Hence, if the
actual world—the ‘real’ world, the way things really are—counts as a possibility,
then it itself cannot be a case in which the premises of a valid argument are
true but the conclusion false. But, then, any sound argument—that is, a valid
argument whose premises are all (actually) true—is one in which the conclusion
is true, and so not false.3

Answer 6. The argument from (6a) and (6b) to (6¢) is valid in the necessary-
consequence approach to validity: it is not possible for both of (6a) and (6b) to

3This last step—from true to not false—is something that some logical theories reject, but
these theories are left for later chapters.
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be true without (6¢) being true. After all, recall that (6a) expresses not only
that if Max is happy then Agnes is sleeping; it also expresses that if Agnes is
sleeping then Maz is happy. Now, consider any possibility (and possible circum-
stance) in which both (6a) and (6b) are true, that is, a possible circumstance
in which not only Agnes is sleeping, but if Agnes is sleeping (in that circum-
stance), then Max is happy (in that circumstance). Well, then, no matter what
possible circumstance we choose, it’ll be one in which Max is happy if it’s one
in which both (6a) and (6b) are true. (Of course, there are, presumably, many
possibilities in which neither (6a) nor (6b) are true, but this does not affect the
necessary-consequence sense in which the given argument is valid. Why?)
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Language, Form, and Logical Theories

We provide examples of some answers to some problems. (Later chapters provide
answers to more of the given chapter’s problems.) As with Chapter 1, Georg
Brun [GB] and Tim Rugalsky [TR] provided useful notes on these answers that
we herein use.

Exercises

1.

2.

What is a sentential connective? What is a unary connective? What is a
binary connective? (What is the degree or arity of a sentential connective?)
Relying on the informal idea of ‘possible circumstance’ for our ‘cases’, and
using the ‘truth condition’ in §2.4 for conjunction, say whether the following
argument form is valid: A A B -. B. Justify your answer by invoking the
general definition of ‘validity’ (or logical consequence) and the given truth
condition.

. In §2.4 we gave a natural truth condition for conjunction. Give what you’d

take to be a natural ‘truth condition’ (strictly, truth-in-a-case condition)
for disjunction. Do the same for negation. (You’ll need these conditions in
some of what follows.)
Consider the argument from premises (6) and (9) to conclusion (4). Using
the symbolism introduced above, give its argument form. Taking ‘cases’
to be ‘possible circumstances’, and using the truth conditions that you
provided for disjunction and negation (and, if need be, the condition in
§2.4 for conjunction), is the given form valid? Justify your answer.
Answer [GB & TR]. The argument is:

6. Max likes beans or Agnes likes beans (or both).

9. It is not true that Max likes beans.

4. Therefore, Agnes likes beans.
The logical form is AV B,—A . B. This argument form is valid if we
assume the following star principle:!

* If a sentence is false-in-c it is not true-in-c.
Proof. We show that there cannot be a counterexample; that is, no pos-
sible circumstance ¢ in which A V B and —A are both true, but B is not

IThis principle is a reasonable but big assumption, one challenged by logical theories ex-
plored in later chapters. Note that if your answer to the question concerning negation’s truth
conditions involved something along the following star-principle lines, then your account will
also be challenged in later chapters. For now, things are left sufficiently open to allow for
divergent views. The important thing, as in this answer, is to be clear about your assumptions.
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true. According to the truth conditions for disjunctions, if ¢ is a possible
circumstance in which A V B is true, then we have one of the following
three:

i. A is true-in-¢, but B is not true-in-c

ii. B is true-in-c, but A is not true-in-c

iii A is true-in-c and B is true-in-c.
If ¢ is a possible circumstance such that —A is true-in-c as well, then, ac-
cording to the truth conditions for negations, A is false-in-¢ and according
to (*) A is not true-in-c. This rules out (i) and (iii) as counterexamples.
Hence, if ¢ is a counterexample, (ii) must hold; that is, B is true-in-c. But
then c is not a possible circumstance in which the conclusion B is not true
and consequently, ¢ is not a counterexample. If we reject (*), =A does not
place any restriction on counterexamples with respect to (i)—(iii). So we
can construct a counterexample ¢ with B not true-in-¢, A true-in-¢, and A
false-in-c. AV B is then true-in-c in virtue of (i), =A is true-in-c because
A is false-in-c and B is not true-in-c.

. Consider the argument form —AV B, A .-. B. Taking ‘cases’ to be ‘possible
circumstances’, and using the truth conditions that you provided for dis-
junction and negation, is the given form valid? Justify your answer. (Your
answer may turn, in part, on your philosophy of ‘possible circumstances’!)
Answer [GB] and [TR/]. One answer to exercise 3 gives the truth conditions
for negations and disjunctions in such a way that a counterexample ¢ must
be a possible circumstance with the following characteristics:
(a) Given disjunction conditions, one of the following three holds:
i. = A is true-in-¢ but B is not true-in-c;
ii. —A is not true-in-c¢ but B is true-in-c;
iii. =A and B are both true-in-c.
According to the truth conditions for negations, these amount to:
i. A is false-in-c and B is not true-in-c;
ii. A is not false-in-c and B is true-in-c;
iii. A is false-in-c¢ and B is true-in-c.
(b) A is true-in-c.
(¢) it is not the case that B is true-in-c.
To prove validity, we need the following ‘plus’ assumption:
-+ If a sentence is true-in-c it is not false-in-c.
According to (+), (b) rules out (i) and (iii); Furthermore, (c) rules out
(ii) and (iii). Hence there cannot be a counterexample meeting all three
conditions (a)—(c) and consequently, the given argument form is valid. If
we reject (+), (b) no longer rules out (i) and (iii). We can then construct
a counterexample c as follows: A is true-in-c, A is false-in-¢, and B is not
true-in-c.
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6. Let us say that a sentence is logically true if and only if there is no case in

which it is not true. Using the truth conditions that you gave for disjunction
and negation, say whether the disjunction of (2) and (8) is logically true.
Justify your answer. (Also, what is the logical form of the given sentence?
Is it true that, given your truth conditions, every sentence of that form is
logically true?)

Answer. [TR] The logical form of ‘Agnes is running or Agnes is not run-
ning’ (or a variant using ‘it is not true that...”) is AV —A. Now, the answer,
as throughout this chapter, depends on how you define possible circum-
stance and the truth conditions for negation and disjunction. On certain
assumptions about the truth (and falsity) conditions for negations, the
sentence (and, more broadly, sentence form) is logically true provided that
disjunctions are true just if at least one disjunct is true. We give an answer
along these lines. [NB: later chapters go into more examples of how these
assumptions get rejected or modified.] Proof. Let ¢ be any possible circum-
stance. We (here, though not in later chapters!) assume that the negation
—A is true-in-c iff A is false-in-c if and only if A is not true-in-c, and that
AV —A is true-in-c just if either A is true-in-c or —A is true-in-c. Now, ei-
ther A is true-in-c or it isn’t. We show that either way AV —A is true-in-c.
Suppose, first, that A is true-in-c. Then, by said conditions on disjunction,
AV —A is true-in-c. Suppose, in turn, that A is not true-in-c. Then, by
said conditions on negation (and falsity), A is false-in-c and, hence, —A is
true-in-c. Since —A is true-in-¢, conditions on disjunction give us (again)
that AV —A is true-in-c.

. Consider the following argument.

(a) Max is a bachelor.

(b) Therefore, Max is unmarried.

Neither sentence has any of our given connectives, and so both sentences
are atomic, at least according to our definitions above. As such, atomics
have no significant logical form. Instead, following the policy according
to which distinct sentences are represented by distinct letters,? we would
represent the argument form thus: A .. B. Is this argument form valid? If
so, why? If not, why not? If there’s not enough information to tell, what
is the missing information? What premise might be added to make the
argument valid?

Answer [GB]. A . B is not a valid argument form. For a counterexample,
it suffices to find two sentences and a possible circumstance ¢ in which one
of them is true and the other one is not true. For example, 2+2=4 and
2-2=4. Assuming that ‘x is unmarried’ expresses that x is not married, an
additional premise that turns the example into a valid argument is: either
Maz is a not bachelor or Max is unmarried. The resulting argument form

2This is the policy that we will generally follow.
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was proved valid in exercise 2.5. Another equivalent option (cf. p. 55), we
may add: if Maz is a bachelor, then Mazx is unmarried.

8. Consider, again, the argument above from ‘Max is a bachelor’ to ‘Max is
unmarried’. Is the conclusion a mecessary consequence of the premise? If
so, what, if anything, does this suggest about the role of ‘logical form’ in
the ‘necessary consequence’ account of validity given in Chapter 17
Answer. Assuming that being a bachelor requires, inter alia, being un-
married, this is a valid argument on the necessary consequence account
of validity. There is no possibility that Max is a bachelor yet not unmar-
ried. Consequently, logical validity cannot exclusively be a matter of logical
form in the necessary consequence account of validity—or, at least, so one
logical theory might go (though we do not discuss this issue much in later
chapters).

9. In your own words, say what it is to give truth-in-a-case conditions (or,
for our purposes, truth conditions) for sentences. Why, if at all, is this
activity—that is, giving so-called truth conditions—essential to an account
of logical consequence as we’ve defined it (in Chapter 1)?

Sample answers

Answer 2. On the current ‘possible circumstance’ approach to cases, the argu-
ment form AA B . B is valid iff there’s no possible circumstance in which AA B
is true but B not true (for any sentences A and B). On this account of validity,
A A B . B is valid. Proof: suppose that ¢ is a possible circumstance in which
AA B is true. By the (given) truth conditions for conjunction (see §277), if AAB
is true-in-c then both A and B are true-in-c, and so B is true-in-c. But, by sup-
position, A A B is true-in-¢, and so we conclude that B is true-in-c too. Hence,
since what we’ve said about ¢ applies to any possible circumstance, we conclude
that there can’t be any possible circumstance in which A A B is true but B not
true; and, so, there can’t be a counterexample to the given argument form.

Answer 8. Here are natural truth conditions (i.e., more accurately, truth-in-a-
case conditions) for disjunction and negation.
e A disjunction AV B is true-in-a-possible-circumstance-c if and only if A is
true-in-c or B is true-in-c¢ (or both).
e A negation —A is true-in-a-possible-circumstance-c if and only if A is false-
in-c.
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Set-theoretic Tools

We provide examples of some answers to some problems.

Exercises
1. Write out Y x Z and Z x Y, where Y = {1,2} and Z = {a,b,c}. Are Y x Z
and Z x ) the same set? Justify your answer.
Answer [GB]. Y x Z = {(1,a),(1,b),(1,¢),(2,a),(2,b),(2,¢)} and Zx Y =
{{a,1),(a,2), (b, 1), (b,2), (¢, 1),{c,2)}. Whether Y x Z = Z x Y depends
on the identities of a,b, ¢, 1 and 2. Consider two examples.
(a) If we assume that a,b and c¢ are all different from 1 and 2, then the
two sets are different because (1,a) € Y x Z but (1,a) ¢ Z x ).
(b) If a =1 and b = 2 and ¢ = 1, then, since Z = {1, 2}, both sets J and
Z are identical, and so Y x Z = Z x Y = {(1,1),(1,2),(2,1),(2,2)}.
[We note, though, that it is not at all an unreasonable assumption that
the letters (e.g., ‘a’, ‘b, etc.) name items distinct from the numbers named
by the numerals. If students make such an assumption, it’s worth flagging
that they’re making it, but our opinion is that no major blunder has been
made. Students should, of course, assume that the standard numerals are
used for their standard objects—the numbers, etc.]

2. Using definition by abstraction, give brace-notation names (i.e., names
formed using ‘{’ and ‘}’ as per the chapter) for each of the following sets.
(a) The set of all even numbers.
Answer. {x : z is an even number}

(b) The set of all felines.
Answer. {z : x is a feline}

(c) The set of all tulips.
Answer. {z : z is a tulip}

(d) The set of all possible worlds.
Answer. {x : z is a possible world}

(e) The set of all people who love cats.
Answer. {z : x is a person and x loves cats}
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3. Assume that a, b, ¢, and d are distinct (i.e., non-identical) things. Which
of the following relations are functions? (Also, if you weren’t given that the
various things are distinct, could you tell whether any of the following are
functions? If so, why? If not, why not?)

(a)

(e)

{(a,a), (b,b), (c,c), (d, d)}

Answer. This is a function, and we could tell as much even without
knowing that the given entities are distinct. Even if they were distinct,
there still wouldn’t be an entity in the relation that’s related to two
distinct items.

{{a,d), (b, d), {c,d),(d,d)}
Answer. This is a function, and for the same reason as in the first one
(above), we don’t need to know that the various entities are distinct.

{{a,b),(a,c), (b,d), (d,d)}
Answer. Given that b # ¢, this is not a function since a is related to
both b and c. (If, contrary to the information in the problem, we had

that b = ¢, then this would be a function.)

{(b,a),(c,d),(a,a), (b,d)}
Answer. This is not a function given that a # d but b is related to
both a and d. (Again, if, contrary to given information, we had that
a = d, then this would be a function—indeed, the same function men-
tioned exercise 3b above.)

{(d.d), (d,b), (b,d), (a,d)}

Answer. This is not a function, since d is related to both d and b but
d # b. (If, contrary to given information, we had that d = b, then
this would be a function—a constant function mapping everything
in {a,b} to b. And we know that this is a function regardless of a’s
identity.)

4. Consider the relation of biological motherhood, which holds between objects
x and y if and only if y is the biological mother of z. Is this relation a
function? Justify your answer.

Answer. Yes, this is a function because nothing has more one biological
mother. (Of course, many people—and non-human animals, generally—
have more than one mother in various familiar senses of ‘mother’. But the
question concerns the biological sense.)

5. Consider the relation of loves, which holds between objects x and y if and
only if x loves y. Is this relation a function? Justify your answer.
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Answer. The relation of loves is not a function. That it isn’t a function
is established by the fact that many people (and animals more generally)
love more than one thing. (E.g., we—authors of this supplement—Ilove the
outdoors, philosophy, logic, and quite a few people.)

. Since functions are relations, and all relations have a domain and range, it

follows that functions have a domain and range. We say that the domain
of a function f is the set of f’s arguments (or ‘inputs’), and the range of
f is the set of f’s values (or ‘outputs’). Let the domain of g be {1,2,3},
where ¢ is defined as follows.

g(x) =z +22

What is the range of g7
Answer. The range of g is {g(1), g(2), g(3) }, which is the same as {23, 24, 25}.

. Let X = {1, 2} and Y = {Max, Agnes}. Specify all (non-empty) functions

whose domain is X’ and range is ).

Answer [TR]. There are exactly two functions with domain {1, 2} and range
{Max, Agnes}, namely, {(1, Max), (2, Agnes)} and {(1, Agnes), (2, Mazx)}.
[NB: we should note that {(1, Maz), (2, Maz)} is a function, but its range
is {Maz}, not {Max, Agnes}. Similarly {(1, Agnes), (2, Agnes)} is a func-
tion with an incorrect range. (If we let the codomain of a function simply
be any set that includes, as a subset, the range of the function, then these
other two functions would be functions from the given domain into the
given codomain {Max, Agnes}. For purposes of this book, we rely just on
the idea of a range for functions—viz., the set of values or ‘outputs’.|

. Specify all (non-empty) subsets of {1, 2, 3}.

Answer. The non-empty subsets of {1, 2,3} are {1}, {2}, {3}, {1,2}, {1,3},
{2,3}, and {1, 2, 3}.

9. Show why each of the following are true for any sets X and ).

(a) fX AV, then XNY C XUY.
Answer. We have to show that if X # ), then the intersection of X
and ) is a proper subset of the union of X and ). So, towards condi-
tional proof, we assume that X’ # ) (which tells us that there’s some
difference or other in membership). Now, to show the proper-subset
claim, we first need to show that X N') is a subset of X U ). If the
former is empty, then the claim is easy (because vacuously true). So,
let z be any element in X' N')Y. We need to show that z € X U ).
But this follows immediately from the fact that z € X N), and hence
z € X and z € Y, and hence z is in at least one of X and ), and
hence z € X U Y. So, X NY C X U Y. Towards proper subsethood,
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we need to show is that there’s something v € X U Y that’s not in
X NY. This, finally, is where our assumption about X # ) comes into
play. In particular, we have from our initial (antecedent) assumption
that X’ # ). Suppose, for reductio, that there’s nothing in X U)Y that
isn’t in X N Y, that is, that X NY C YU Y. Well, then, since we just
proved above that X NY C X U)Y, we conclude that YUY = X NJ.
But this can only happy if X = Y,! which contradicts our assumption
that X = ).

(b) f X C )Y, then YUY = ).
Answer. This is sufficiently answered in Sample Answers.

(¢) X CY, then XNY C ).

Answer. Suppose, for conditional proof, tat X C ). We need to show
that X N') is a proper subset of ). We first show that it’s a sub-
set. Towards that end, let z € X N ), in which case, by definition
of intersection, we have that z € X and z € ). Hence, z € ). So,
XNY C Y, by definition of subsethood. Towards showing properness,
we suppose, for reductio, that there is nothing in ) that isn’t also in
X N Y, that is, we suppose that J) C X' N ). Since we already have
that X NY C ), we have that X NY = ). But here is where our ini-
tial (antecedent) assumption comes into play. We already have that
X C Y, and so there’s something (say, z) that’s in ) but not in X.
Hence, z € Y, but z ¢ X, and since not in X, we have (by definition
of intersection) that z ¢ X N ). But this contradicts that X NY = Y.
Hence, we conclude that our assumption for reductio is incorrect, and
so conclude that X N is not only a subset of ), but a proper one
(given the antecedent assumption that X is a proper subset of V).

10. Let f be some function with dom(f) = X (i.e., the domain of f is &),

for some arbitrary (non-empty) set X. We say that our function f is a
function from X into Y if ran(f) C Y. Given this terminology, specify
all (non-empty) functions from {A, B} into {1,2,3}, where A and B are
distinct sentences. (Note that any such function must map every element
of the domain to something in {1, 2,3}.)
Answer [TR]. Let the notation f : X — Y represent a relation f with
dom(f) = X and ran(f) = Y. Then the non-empty functions from {A, B}
into {1,2,3} can be categorized by the non-empty subsets of {1,2,3} (see
exercise 8) as follows.

1Proof: suppose that X UY = X' NY but, for reductio, also X # Y. Then there’s a difference
in membership, and so, without loss of generality, let’s say that there’s something in ) that
isn’t in X, and let’s let the item be z. Since z € Y, then z € X U)Y. But z ¢ X, and hence
z ¢ X NY. Contradiction.
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(a)
(b)
(¢)
(d)
()
(f)

(g)

All functions f : {4, B} — {1}, namely, {(4,1), (B, 1)}.

All functions f: {A, B} — {2}, namely, {(4,2),(B,2)}.

All functions f: {A, B} — {3}, namely, {(4,3),(B,3)}.

All functions f : {A, B} — {1,2} not given above: {(4,1),(B,2)}
and {(4,2), (B,1)}. [NB: functions in 10a and 10b above count here
too.

All functions f : {A, B} — {1,3} not given above: {(4,1),(B,3)}
and {(4,3), (B, 1)}. [NB: functions in 10a and 10c above count here
too.|

All functions f : {A, B} — {2,3} not given above: {(4,2), (B,3)}
and {(A4,3),(B,2)}. [NB: functions in 10b and 10c above count here
too.]

There are no functions f : {4, B} — {1, 2,3}, only relations. (Recall
that, on this notation, ran(f) = {1,2,3}.)

11. Let X be an arbitrary set and f an arbitrary function. We say that f is an
operator on X if and only if the dom(f) = X and ran(f) C X. Consider
the following operator on {1, 0}.

glz)=1—-x

Now, imagine a function v that assigns either 1 or 0 to each atomic sentence
of our language, so that, for any atomic sentence A of our language, we
have it that v(A) =1 or v(A) = 0. Answer the following questions.

(a)

(b)

Suppose that v(A) = 1. What is g(v(A))?
Answer. This is sufficiently answered in Sample Answers.

Suppose that v(A) = 0. What is g(v(A))?
Answer. g(v(A)) =1if v(A) = 0.

If v(A) = 1, what is g(g(v(A)))?
Answer. g(g(v(A4))) =1ifv(A) = 1.

Is it true that g(g(z)) = 1 just when z =17
Answer [GB]. Yes, g(g(x)) =1 just if # = 1. Proof. dom(g) = {1,0},
and so there are exactly two cases:

i if z =1, then g(g(z)) = g(9(1)) = g(1
ii. if 2 =0, then g(g(x)) = g(g(0)) = g(1

0)=1-0=1;
1—-1=0.

How, if at all, is the given function g similar to negation (as you
thought about it in Chapter 2)?

Answer [GB]. The operator g turns 0 into 1 and 1 into 0. If we corre-
late 0 with falsity and 1 with truth, then negation behaves similar to



Set-theoretic Tools 17

g if negation is a function such that the negation of a true sentence is
false and the negation of a false sentence true. However, in places in
Chapter 2 (e.g., solutions to exercise 3), and certainly in subsequent
chapters, we assume only the latter, but not the former. (Exactly how
negation behaves is a rich part of logical theorizing!)

Sample answers

Here are some sample answers. (In the first one, the answer is somewhat involved
for purposes of illustrating, in a fairly step-by-step fashion, how one might go
about proving the given claims.)

Answer 9b. We have to show that if X C ), then X U)Y = ). We show this
(viz., the given conditional) by so-called conditional proof: we assume that the
antecedent is true (viz., that X C Y), and then show—via valid steps (!)—
that the consequent is true. (Usually, we do this simply by invoking definitions
involved.) So, suppose that X C Y, in which case, by definition of proper subset
(see Def. 11), it follows that anything in X is in Y, and that ) contains something
that X' doesn’t contain. Now, we need to show the consequent of our target
conditional: viz., that X U) = ). This is an identity claim: it claims that the
two given sets are identical. How do we show that they’re identical? Well, we
have to invoke the definition of identity for sets, which tells us that, in this case,
XUY =Y iff both XU)Y and )Y contain exactly the same things. In other words,
we show that X UY = Y by showing that something (no matter what it is) is in
X U Y if and only if it’s in ). So, in effect, we have to show that two different
conditionals are true to show that the two sets are identical:

9b.1 If something (no matter what it is) is in X U Y, it is in Y.
9b.2 If something (no matter what it is) is in ), it is in X U Y.

And here, we can just do so-called conditional proofs again for each of (9b.1) and
(9b.2): we assume the given antecedents and show, via valid steps (usually just
appealing to the definitions), that the given consequents follow. So, for (9b.1),
we assume that something—call it (no matter what it is) ‘z’—is in X UY. What
we have to show is that z is in ). Well, by assumption, we have that z € X U,
in which case, by definition of union (see Def. 7?),if z € X UY then z € X or
z € Y. In the latter case, we have what we want (viz., that z € ). What about
the former case in which z € X7 Do we also get that z € Y7 Yes: we get this
from our initial supposition that X C ), which assures that anything in X is in
Y. What this tells us is that, either way, if something z (no matter what z may
be) is in X U Y, then it’s also in ) (provided that, as we’ve assumed from the
start, X C )). And this is what we wanted to show for (9b.1).

With respect to (9b.2), we assume that something z (no matter what z is) is
in Y. We need to show that z € X U ). But this follows immediately from the
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definition of union (see Def. ??).2 According to the definition, something is in
X UY if and only if it’s either in X or in ). Hence, given that (by supposition)
z € Y, we have it that z € X U ).

Taking stock of Answer 9.b. What we’ve proved, in showing (9b.1) and (9b.2),
is that, under our assumption that X C ), something (no matter what it is) is
in X UY iff it’s in . By definition of identity for sets (see Def. ??), this tells
us that, under our assumption that X C ), the sets X U) and ) are identical.
And this is what (9b) required us to show.

Answer 11a. If v(A) is 1, then, plugging 1 in for z in the definition of function
g, we have that g(1) =1 — 1, and so g(v(A4)) is 0.

2Well, we’re assuming that so-called Addition is valid, that is, that a disjunction is implied
by either of its disjuncts. Some logical theories question this (see, e.g., Chapter 12 in which
one such theory is briefly waved at); however, we’ll assume it in our reasoning throughout the
book.
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Exercises
1. Show that, on the classical theory, A .. == A is valid.

Answer. One way of answering this uses reasoning as in §4.3 (see the proof
that =—A . A is classically valid). For purposes of illustration, we here
use the ‘formal picture’; explicitly invoking our functions (or ‘valuations’)
v: 8 — V. In particular, let v be (or represent, if you prefer) any classical
case in which A is true, that is, v(A) = 1. Now, since v(A) = 1, we have
that, since v is a function, ¥(A) # 0. In turn, the classical ‘truth condi-
tions’ for negation tell us that v(A) # 0 iff v(—A) # 1. So, we have that
v(—A) # 1. But since v assigns every sentence either 1 or 0, we conclude
that v(—=A) = 0 since v(—A) # 1. But, then, by the clause for negation,
v(——A) = 1 since v(—A) = 0. Hence, since this reasoning applies to any
classical case (or representation of a classical case) v, we conclude that
there’s no classical case in which v(4) = 1 and —=—A) # 1, that is, no
classical case in which A is true but ——A untrue. So, A .. =—A is valid
according to the classical theory.

2. Show that, according to the classical theory, A, B . A A B is valid.

Answer. Again, we can show this in various ways. Invoking the ‘formal
story’ as in the answer above, we can reason as follows. Suppose that
each of A and B are true according to some classical case v, that is, that
v(A) = 1 =v(B). By the truth conditions (i.e., truth-in-a-case conditions)
for conjunction, it follows immediately that v(A A B) = 1, that is, that
A A B is true in the given case. Hence, since this reasoning applies to any
classical case, we conclude that there is no classical case in which both A
and B are true but A A B untrue.

3. In addition to our definition of logical truth (true-in-every case), let us
define contingent and logically false as follows.

e Sentence A is logically false iff it is false-in-every case.
e Sentence A is contingent iff it is true-in-some case, and false-in-some
case.
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For each of the following sentences of L, say whether, according to the
classical theory, it is logically true, logically false, or contingent.!

(a) p—p
Answer. Status: logically true.

(b) p—-p
Answer. Status: contingent. Any case in which p is true is a case in
which p — —p is false, and any case in which p is false is one in which
p — —p is true. There are, of course, classical cases of each sort. [NB:
it may be useful for your students to recall the primitive notation in
terms of negation and disjunction: A — B abbreviates =A V B, and
so p — —p abbreviates —p V —p.]|

(€) pA-p
Answer. Status: logically false.

(d) qvp
Answer. Status: contingent.

() gn(pVa)
Answer. Status: contingent.

() ¢Vv(pAq)
Answer. Status: contingent.

(8) ¢« —p
Answer. Status: contingent.

() (pA(p—q) =4
Answer. Status: logically true.

4. For each of the valid forms in §4.7, give a proof that they’re valid. (Carefully
consider whether there can be a classical case in which the premises are true
and the conclusion false. To do this, you'll need to keep going back to the
truth conditions for the various connectives. One useful method for doing
this is called Reductio. The idea, in this context, is to assume that there s
a counterexample to the given argument, that is, that there is a classical
case v that satisfies the premises but assigns 0 to the conclusion. If this
assumption leads to a contradiction—in particular, that some sentence gets
assigned both 1 and 0, which is impossible—you conclude, via Reductio,

1 Again, for convenience, otherwise requisite parentheses are dropped when confusion won’t
arise.
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that the initial assumption was wrong, that is, that there can’t, contrary
to your initial assumption, be a classical counterexample.)

Answer. In our answers here (in the supplement), we use the ‘formal
picture’, but one could also do this using the slightly less formal nota-
tion (involving k=1 and the like) to which we return fully in Chapters 8-
12. We often use ‘reductio reasoning’ here (in this supplement), and it
may be useful—and, in these examples, is often just as useful (and more
illuminating)—to do some direct proofs with your students. Also, impor-
tantly, here and in subsequent chapters we rely on the fact that, in our
target logic, we have that A — B is true just if A is false or B is true, and
false just if A is true and B false.

e Modus Ponens: A - B, A+ B
Answer. Let v be any (formal representation of a) classical case, and
let v(A) = v(A — B) = 1. By truth conditions for the arrow, we
have that v(A) = 0 or v(B) = 1. Since, by supposition, v(4) = 1,
we conclude that v(A) # 0 and, hence, that v(B) = 1. Hence, since
this reasoning applies to any classical case, we conclude that there’s
no such case in which both A and A — B are true but B untrue.

e Modus Tollens: A — B,-BF —A
Answer. Suppose, for reductio, that there’s a classical case v such
that v(A — B) =1 = v(—=B) but v(—A) = 0. By negation conditions,
v(A) =1 and v(B) = 0. But, then, v(A — B) = 0, which contradicts
our initial supposition. Hence, there can’t be such a case.

e Disjunctive Syllogism: AV B,-A+ B
Answer. Assume that v(AV B) =1 = v(—A). By truth conditions for
negation, we have that v(A) = 0. But, then, since v(A V B) = 1, the
truth conditions for disjunction imply that v(B) = 1.

e Contraposition: A - B 4+ -B — —A

Answer [LRD]. Suppose that v(A — B) = 1. For reductio, suppose
that v(-B — —A) = 0, in which case, by conditions on the arrow,
v(=B) =1 and v(—=A) = 0, and so, by negation conditions, v(A4) =1
and v(B) = 0, in which case, by the arrow’s conditions, v(A — B) = 0.
This contradicts our initial supposition.

Answer [RLD]. Conversely, suppose that v(—-B — —A) = 1, but, for
reductio, v(A — B) # 1, in which case v(A) = 1 and v(B) = 0, in
which case v(—A) = 0 and v(—B) = 1, in which case v(-B — —A) =
0, which contradicts the initial supposition.

e Explosion: A,-A+ B
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Answer. A counterezample is a case in which all premises (if any)
are true and the conclusion untrue. Since, according to the classical
theory, there’s no case in which both A and —A are true, we can-
not have a counterexample to explosion. Hence, the argument form
(viz., explosion) winds up being valid according to the classical theory.

Addition: A- AV B

Answer. The truth conditions for disjunction tell us that A V B is
true-in-a-case just if at least one disjunct is true-in-that-case. Hence,
there can’t be a case ¢ such that ¢ =1 A but ¢ =1 AV B. So, the
argument form is valid, according to the classical theory.

Adjunction: A, B AANB

Answer. The truth conditions for conjunction tell us that A A B is
true-in-a-case just if both conjuncts are true-in-that-case. Hence, there
can’t be a case ¢ such that each of A and B is true-in-c but A A B is
not true-in-c. So, the argument form is valid, according to the para-
complete theory.

Simplification: AANBF A

Answer. The truth conditions for conjunction tell us that AAB is true-
in-a-case just if both conjuncts are true-in-that-case. So, any case in
which A A B is true is one in which A is true, given the running truth
conditions.

De Morgan: =(AV B) 4+ -A A —-B

Answer [LRD]. Let v(=(A V B)) = 1, in which case v(AV B) = 0,
in which case v(A) = 0 = v(B), and so v(—A) = 1 = v(=B), and so
v(mA A =B) = 1. (The truth/falsity conditions invoked are negation,
disjunction, negation, and then conjunction, in that order.)

Answer [RLD]. Conversely, suppose that v(=A A —=B) = 1, in which
case v(—A) = 1 = v(=B), in which case v(A) = 0 = v(B), and so
v(AV B) = 0 by the truth (falsity) conditions for disjunction. But,
now, by the truth conditions for negation, v(—~(AV B)) = 1.

De Morgan: -(AA B) 4+ -AvV -B

Answer [LRD]. Suppose that v(—(AAB) = 1, in which case v(AAB) =
0. So, by falsity conditions for conjunctions, one of A and B is false-in-
v, in which case one of = A and —B is true-in-v, and so, by disjunction
conditions, we get that v(-AV -B) = 1.

Answer [RLD]. Suppose that v(=AV —B) = 1, in which case either
v(mA) =1 or v(—B) =1, and so either v(A) = 0 or v(B) = 0. Either
way, at least one conjunct in A A B is false-in-v, and so v(AA B) = 0,
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and hence v(—(A A B)) = 1.

e Double Negation: =—A —+g3 A

Answer. We can do both directions in one go by relying on the truth
(falsity) conditions for negation. In particular, v(——A) = 1 iff v(—-A) =
0 iff v(A) = 1. Hence, if you've got a case v in which ——A is 1, then
that’s a case in which A is 1 too, and vice versa.

5. Prove that, where I is our basic classical consequence relation, each of the
following are true (i.e., that the given argument forms are valid in the basic
classical theory).

(a)

(d)

()

A—-B,B—->CFA—-C.

Answer. Suppose that v(A — C) = 0, in which case v(4) = 1 and
v(C) = 0. But, then, in order for A — B to be true-in-v, B must be
true-in-v, in which case B — C isn’t true-in-v. So, there can’t be a
(classical) case in which A — C' is untrue without one of the premises
being untrue. Hence, there can’t be a (classical) counterexample to
the argument form.

(AvB)ANC,A— =CF B.

Answer. Suppose, for reductio, v(B) = 0 but both premises true, in
which case v(A — =C) = 1, and so v(=A VvV =C) = 1, and so either
v(A) =0 or v(C) = 0. Either way, (AV B) A C can’t be true-in-v.

(AVB)ACH- (ANC)V (BAC).

Answer [LRD]. Let v((AV B) A C) = 1 but, for reductio, let the
conclusion be false, in which case v(AAC) = 0 and v(BAC) = 0. Since,
by initial supposition, v(C) = 1, it must be that v(A) = 0 = v(B).
But, then, v(A V B) = 0, contradicting our initial supposition (which
requires that it be true).

Answer [RLD]. Conversely, let v((AA C)V (BAC)) = 1, in which
case either C' and B are true-in-v or C' and A are true-in-v. Either
way, we have, via disjunction conditions, that A V B is true-in-v in
addition to C’s being true-in-v.

(ANB)VC = (AvC)A(BVO).
Answer. The answer here is similar to that above.

A— B,-A— Bl B.

Answer. Suppose that v(A — B) = v(-A — B), in which case,
v(mAV B) = v(——AV B) = 1. Since we cannot have v(—=A) =
v(——A) = 1, it must be that v(B) = 1.
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6. Suppose that, instead of functions, we model our classical cases as sets of
sentences. A case, on this approach, is a set X of L sentences. In turn,
we say that truth in a case is just membership—i.e., being an element—in
such a set. Your task is two-fold:

(a) What constraints do we impose on the given cases for them to be
classical—i.e., ‘complete’ and ‘consistent’?
Answer. We simply say that for any such (new sort of) case X, we
have that exactly one of A and —A is in X, for all sentences A of L.

(b) What are the truth conditions for conjunctions, disjunctions, and
negations on this approach?
Answer.
x A isin X iff Ais notin X.
x AN B isin X iff both A and B are in X.
x AV B isin X iff at least one of A and B is in X.

7. Can you think of a way of defining V in terms of = and A? (Hint: see
whether you can come up with a sentence that uses only = and A but
has exactly the same ‘truth table’ as V.) If so, you’ve shown that, strictly
speaking, we can reduce our number of basic connectives to just = and A
(and treat V, like the others, as defined).

Answer. Define AV B as =(=A A —B).

8. Related to the previous question, can you think of a way of defining A in
terms of V and =7
Answer. Define A A B as =(—AV —B).

Sample answers

Answer 3b. The sentence p — —p is contingent: it is true-in-some case and false-
in-some case. Proof: p is atomic, and so there are cases in which p is true, and also
cases in which p is false. Let v be any case in which p is true, that is, v(p) = 1.
By the classical treatment of negation, v(—p) = 0. By definition, p — —p is
equivalent to —p V —p.? By the truth conditions for disjunction, —p V —p is true
iff one of its disjuncts is true; but —p is the only disjunct, and it is not true-in-
the-given-case, since v(—p) = 0. So, v is a case in which p — —p is not true. On
the other hand, consider any case v’ in which p is false, that is, v’(p) = 0. By the
truth conditions for negation, v'(—p) = 1, in which case, by the truth conditions
for disjunction, v'(—p V —p) = 1, and hence v'(p — —p) = 1. So, v is a case in
which p — —p is true. Hence, there are cases in which p — —p is true and cases
in which it is false.

Answer 4-LEM. To see that LEM is a valid form (i.e., that all of its instances are
logically true sentences), we need to show that there’s no case in which AV —A

2Recall from §4.6 that A — B is defined to be A Vv B.
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is false (for any sentence A). We do this by Reductio. Suppose, for reductio, that
there’s some case v such that v(A V —A) = 0 (for some sentence A). The truth
conditions for disjunction tell us that v(A VvV —A) =1 if and only if v(A) =1 or
v(—=A) = 1. Since, by supposition, v(A V —A) # 1 (since v is a function which
has assigned 0 to A V —A), we have it that v(A) # 1 and v(—A) # 1. But
since v has to assign either 1 or 0 to every sentence, we conclude that v(A) =0
and v(—A) = 0. But this is impossible, since, by truth conditions for negation,
v(=A) = 1 iff v(A) = 0. So, we conclude that our initial supposition—namely,
that there’s some case v in which AV —A (for some A) is false—is itself untrue.
Hence, we conclude that there cannot be a (classical) case in which AV —A (for
some A) is false, which is to say that LEM is valid.

Answer 4-Simplification. To see that A A B implies A in the classical theory,
we can use Reductio.® Suppose, for reductio, that there’s a counterexample to
AAB . A, that there’s some (classical) case v such that v(AAB) = 1 but v(A) =
0. The truth conditions for conjunction tell us that v(AA B) = 1 iff v(4) =1
and v(B) = 1. But, then, we have it that v(A) = 1, since (by supposition) we
have it that v(A A B) = 1. But, by supposition, we also have it that v(A4) = 0.
This is impossible, since v is a function and, so, cannot assign anything to both
1 and 0. (If you've forgotten the chief feature of functions, you should turn
back to Chapter 3 for a quick review!) Hence, we reject our initial assumption
that there’s a counterexample to Simplification, and conclude that there’s no
counterexample—and, hence, that the given form is valid.

3NB: we certainly do not need to use Reductio, since the answer falls directly out of the
truth conditions for conjunction; however, it may be useful to give a few examples of Reductio
reasoning.
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A Paracomplete Theory

Exercises

1. Answer any questions raised in the text.

2. We noted that Excluded Middle is not a logically true (sentence) form in
the paracomplete theory. Question: is there any case in which A V —A is
false? If so, give such a case. If not, say why not.

Answer. There is no case in which A V —A is false, that is, no case ¢ such
that ¢ |Eo A V —A. There are various ways to see this, but the ‘formal
picture’ makes it plain. Suppose, for reductio, that v(A vV =A) = 0 for
some paracomplete case (or, if you want, some formal representation of a
paracomplete case) v. But truth (or, in this case, falsity) conditions for
disjunction, we have it that v(A) = 0 = v(—=A). But by truth (falsity)
conditions for negation, v(—A) = 0 iff v(A) = 1, and so v(A) = 1 and, as
we supposed, v(A) = 0. This is impossible, given that v is a function (and,
hence, cannot assign two different values to the same argument). Hence,
we conclude that there’s no case in which A vV —A is false on our given
paracomplete theory.

3. Recall, from Chapter 4, our definitions of logically true, logically false, and
contingent, where A is any sentence.

o A is logically true iff it is true-in-every case.

e A is logically false iff it is false-in-every case.

e A is contingent iff it is true-in-some case, and false-in-some case.
Our given paracomplete theory, as above, has no logical truths. Give a
(paracomplete) counterexample to each of the following sentences (i.e., a
paracomplete case in which the sentence is not true). In addition, specify
which, if any, of the following sentences are logically false, and which are
contingent.

(a) p—p
Answer. Counterexample: let v(p) = n. Status: neither logically false
nor contingent. [Note. See exercise 4 below.|

(b) p— —p
Answer. Counterexample: let v(p) € {1,n}. Status: contingent.

(¢c) pA-p
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Answer. Counterexample: let v(p) € {1,n, 0}. Status: neither logically
false nor contingent. [Note. If we defined the notion of logically untrue
as untrue-in-all-cases, then this sentence would be logically untrue.]

(d) qgvp
Answer. Counterexample: let v(p) € {n,0} and v(g) € {n,0}. Status:
contingent.

() gn(pVa)
Answer. Counterexample: let v(q) € {n,0}. Status: contingent.

() ¢vprg)
Answer. Counterexample: let v(q) € {n,0}. Status: contingent.

(8) a+ —p
Answer. Counterexample: let v(q) = v(p) or let at least one of v(q)
and v(p) be n. Status: contingent.

() (pA(p—4q) —q
Answer. Counterexample: let v(g) = n and v(p) € {1,n}. Status: not
contingent, since never false-in-a-case—and, so, not logically false.

(i) pVv-p
Answer. Counterexample: let v(p) = n. Status: not contingent, since
never false-in-a-case—and, so, not logically false.

(§) ~(pA=p)
Answer. Counterexample: let v(p) = n. Status: not contingent, since
never false-in-a-case—and, so, not logically false.

4. Suppose that we define a different, broader sort of ‘contingency’ thus:

e A sentence A is broadly contingent iff it is true-in-some case and not true-
in-some case (i.e., untrue-in-some case).

Which, if any, of the displayed sentences (3a)—(3j), from exercise 3, are
broadly contingent? Also: in the given paracomplete theory, can a sentence
be broadly contingent without being contingent?

Answer. Except for (3c), all of (3a)—(3j) are broadly contingent. That, on
the given paracomplete theory, some sentences can be broadly contingent
without being contingent is a consequence of exercises 3 and 4 together.

5. By way of contrast, redo exercises 3 and 4 above in terms of the classical
theory.
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Answer. We take each part of the exercise in reverse (treating exercise 4
first).

(a) We note that the ‘distinction’ between contingent and broadly contin-
gent collapses in the classical theory, since, in that theory, there’s no
different between falsity and untruth.

(b) The classical theory agrees with the paracomplete one on all of the
sentences classified as contingent in exercise 3. The difference comes
with the non-contingent ones. In particular, the classical theory clas-
sifies (3a) and (3h)—(3j) as logically true, and classifies (3c) as logically
false.

6. For each of the valid forms in §5.7, give a proof that they’re valid.
Answer. In our answers here (in the supplement), we use the ‘formal pic-
ture’, but one could also do this using the slightly less formal notation
(involving }=; and the like) to which we return fully in Chapters 8-12. We
do not often use ‘reductio reasoning’ in these proofs, though it may be
useful to give your students a sense of how reductio proofs might go. (In
general, if you’re trying to establish that X implies A in the paracomplete
theory, then you can’t just assume that, for some case v, X is satisfied but
A is false in the case, that is, v(A) = 0. Instead, one needs to assume that
X is satisfied but A untrue, which is a disjunction between being false or
gappy (so to speak).) We also rely on the fact that if B is false-in-a-case
(i.e., has value 0), then A — B is true in that case only if A is false in that
case (i.e., has value 0). [It may worth having students see this point.]

e Modus Ponens: A -+ B,Atg3 B
Answer. Let v be any (formal representation of a) paracomplete case,
and let v(4) = v(A — B) = 1, and so, by definition of the arrow,
v(=AV B) = 1. By negation conditions, v(—A) = 0, and hence, by
disjunction conditions, v(—AV B) =1 only if v(B) = 1.

e Modus Tollens: A — B,—B kg3 -A
Answer. Let v(A — B) = 1 = v(—B). In this case, v(B) = 0, and so
v(A — B) =1 only if v(A) =0, and so only if v(—=A4) = 1.

e Disjunctive Syllogism: AV B,—~A ks B
Answer. Assume that v(AV B) =1 = v(—A4), and sov(A4) = 0. Since
v(AV B) = 1, disjunction conditions imply that v(B) = 1.

e Contraposition: A - B ‘g3 -B — —A
Answer [LRDJ. Let v(A — B) = 1, and so v(=AV B) = 1, and so
either v(—A) =1 or v(B) = 1. Hence, either v(=B) = 0 or v(—A) =1,
and so either v(—=—B) =1 or v(—A) = 1, and so v(—=—BV —-A) = 1,
and so, by definition of the arrow, v(-B — —A4) = 1.
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Answer [RLD]. Let v(=B — —A) =1, and so v(——BV —=A) = 1, and
so either v(—A) =1 or v(B) = 1, and so v(—mAV B) = 1, and so, by
definition of the arrow, v(4 — B) = 1.

e Explosion: A,—AFgs B

Answer. A counterezample is a case in which all premises (if any) are
true and the conclusion untrue. Since, according to the paracomplete
theory, there’s no case in which both A and —A are true, we cannot
have a counterexample to explosion. Hence, the argument form (viz.,
explosion) winds up being valid according to the given paracomplete
theory. (Note. In the next chapter, we explore a logical theory accord-
ing to which explosion is invalid.)

e Addition: AFg3 AV B
Answer. The truth conditions for disjunction tell us that AV B is
true-in-a-case just if at least one disjunct is true-in-that-case. Hence,
there can’t be a case ¢ such that ¢ =1 A but ¢ =, AV B. So, the
argument form is valid, according to the paracomplete theory.

e Adjunction: A, BFg3 AANB
Answer. The truth conditions for conjunction tell us that A A B is
true-in-a-case just if both conjuncts are true-in-that-case. Hence, there
can’t be a case ¢ such that each of A and B is true-in-c but A A B is
not true-in-c. So, the argument form is valid, according to the para-
complete theory.

e Simplification: AA Btgs A
Answer. The truth conditions for conjunction tell us that AADB is true-
in-a-case just if both conjuncts are true-in-that-case. So, any case in
which A A B is true is one in which A is true, given the running truth
conditions.

e De Morgan: ~(AV B) 4+g3 “AA-B

Answer [LRD]. Suppose that v(=(AV B)) = 1, in which case v(AV
B) =0, in which case v(A) = 0 = v(B), and so v(—-A4) = 1 = v(=B),
and so v(mA A -B) = 1. (The truth/falsity conditions invoked are
negation, disjunction, negation, and then conjunction, in that order.)
Answer [RLD]. Conversely, suppose that v(-A A =B) = 1, in which
case v(—A) = 1 = v(—B), in which case v(A) = 0 = v(B), and so
v(AV B) = 0 by the truth (falsity) conditions for disjunction. But,
now, by the truth conditions for negation, v(—(AV B)) = 1.

e De Morgan: =(A A B) 4Fg3 AV -B
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Answer [LRD]. Suppose that v(=(AAB) = 1, in which case v(AAB) =
0. So, by falsity conditions for conjunctions, one of A and B is false-in-
v, in which case one of A and —B is true-in-v, and so, by disjunction
conditions, we get that v(-AV -B) = 1.

Answer [RLD]. Suppose that v(=AV —B) = 1, in which case either
v(—mA) =1 or v(—B) =1, and so either v(A) =0 or v(B) = 0. Either
way, at least one conjunct in A A B is false-in-v, and so v(AA B) =0,
and hence v(—(A A B)) = 1.

e Double Negation: =—A g3 A
Answer. We can do both directions in one go by relying on the truth
(falsity) conditions for negation. In particular, v(——A) = 1 iff v(—-A) =
0 iff v(A) = 1. Hence, if you've got a case v in which =—A is 1, then
that’s a case in which A is 1 too, and vice versa.

7. Weak Kleene. An alternative paracomplete theory, one that is less classical

than the one in this chapter, is so-called Weak Kleene (WK). On this
approach, cases are as in our given paracomplete theory; however, the
truth- and falsity-in-a-case conditions differ quite a bit with respect to
the ‘gappy’ value n. In particular, the truth and falsity conditions are the
same as our given paracomplete theory with respect to the classical values
(i.e., 1 and 0); however, the conditions concerning n are as follows. If, for
some WK case v, we have it that either v(A) = n or v(B) = n, then
v(=A) = n = v(=B), and similarly v(AV B) = n = v(A A B). On this
approach, any whiff of ‘unsettledness’ in a (molecular) sentence renders
the entire sentence gappy (or unsettled). The question: what, if any, of the
argument forms in §5.7 are valid on the WK logical theory? (Consequence,
for the WK theory, is defined as usual, where truth in a case and falsity in
a case are defined as per our given paracomplete theory in terms of 1 and
0, respectively.)

Answer. First, we note an infelicity in the way that this problem is pre-
sented. We should clarify that negation is treated in WK exactly as in K3
(Strong Kleene): if A is a ‘gap’, then any molecular in which A occurs is
also a ‘gap’, according to the WK approach. With this in mind, the answer
is that WK agrees with K3 on all of the argument forms in §5.7 except for
Addition, which fails in WK. A counterexample is any WK case v such
that v(A) = 1 but v(B) = n, in which case v(A V B) = n. (Note that one
philosophically intuitive motivation for this treatment is to think of the
value n as recording the meaningless status for sentences.)

Sample answers

Answer 3i. The sentence p V —p fits into none of our given categories: it’s not
logically true; it’s not logically false; and it’s not contingent. To establish this,
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we address each claim in turn.

3i.a. p V —p is not logically true, as there are cases in which it is not true.
In particular, let v be any (paracomplete) case in which p is gappy, that
is, v(p) = n. By the truth conditions for negation (see the table in §77),
v(—p) = n. By the truth conditions for disjunction, v(p V —p) = n. Hence,
any case in which p is gappy is one in which pV —p is gappy, and so untrue.

3i.b. p V —p is not logically false, as there are cases in which it is not false. In
particular, see the case above in (3i.a).

3i.c. p V —p is not contingent, as there is no paracomplete case in which it is
false. To see this, note that v(p V =p) = 0 iff v(p) = 0 = v(—p); but the
truth conditions for negation require that v(p) # v(—p).

Answer 4i. pV —p is broadly contingent. There are cases in which it is true: for
example, any case v such that v(p) = 1 or v(p) = 0 is one in which v(pV -p) = 1.
(Why?) Moreover, there are cases in which p V —p is not true: let v be any case
such that v(p) = n.
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Exercises

1. Given your understanding of designated values, answer the following ques-
tions. What are the designated values of our basic classical theory (see
Chapter 4)? What are the designated values of our basic paracomplete
theory (see Chapter 5)?

Answer. Both questions get the same answer: namely, that the classical and
basic (non-paraconsistent) paracomplete theories recognize only one des-
ignated value, which was formally represented (in the ‘formal picture’) by 1.

2. One might, as mentioned in the text, have reason to reject indeterminacy
but, in light of the Liar (or the like), nonetheless acknowledge overdetermi-
nacy. A logical theory along these lines was first advanced by Asenjo (1966)
but known widely from Graham Priest’s work (1979) as LP for ‘logic of
paradox’. The difference between LP and our basic paraconsistent theory
is that the former ignores incomplete cases. In particular, everything is
the same except that V = {1,b,0}, but D (the designated values) remains
{1,b}, as we have it. Question: are there any logical truths in LP? If so,
prove it. If not, explain why not.

Answer. Yes, there are logical truths in LP. For example, unlike in K3
and our broader (paracomplete and paraconsistent) FDE, we excluded
middle holds in LP, that is, Fp AV —A. Proof: our only semantic val-
ues are in {1,b,0}. If v(A) € {1,b} (that is, if A is designated), then
v(AV —A) € {1,b} too—and, so, true (designated). So, suppose that
v(A) = 0. In this case, AV A again winds up true, since LP treats
negation just like the classical theory when gluts (more generally, clas-
sical values) are not involved. In particular, if v(A) = 0, then v(-A4) = 1,
and so v(A V —A) = 1. Hence, no matter what semantic value A gets in
LP, AV —A winds up true. Not only is A V = A logically true in LP, but
so too are all sentences that are logically true according to the classical
theory—that is, every classical logical truth is logically true in LP. [This is
more involved to prove in a rigorous fashion, and we don’t prove it here.
See either the Assenjo or Priest papers cited above.]

3. Are there any cases in which A A—A is true (designated), according to our
basic paraconsistent theory? If so, give an example. If not, say why not.
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Answer. Yes. Any case in which A is a glut is one in which A A=A is a
glut. Since being a glut is counted as a way of being true, we therefore have
cases in which AA—A is true. On the ‘formal picture’, we can put the point
thus: if there’s a case v in which v(A A ~A) € {1,b}, then that’s a case
in which A A —A is true (or, formally, designated). There are many FDE
cases like that, in particular, any case in which v(A) = b is such a case.
After all, v(A) = b only if v(—A) = b, and, by conditions on conjunction,
if v(A) = b = v(—A), then so too v(AA-A) =b.

. Are there any cases in which —=(A A —A) is not true (not designated),
according to our basic paraconsistent theory? If so, give an example. If
not, say why not.

Answer. Yes, there are cases in which —(AA—A), namely, any K3 (i.e., basic-
paracomplete) case counts as an FDE (i.e., basic paraconsistent) case, and
there are plenty of K3 cases in which —=(A A =A) is untrue, namely, any
such case v such that v(A) = n. On the other hand, just as in K3 and the
classical theory, there are no basic-paraconsistent cases in which -(AA—-A4)
is ‘just false’ (i.e., has semantic value 0). (Why?) We should note that there
are FDE cases in which —(A A —A) is false, namely, those cases that treat
A as a glut—and, so, treat A A =A as a glut, and so treat the negation
of AN —A as a glut. But these cases, of course, are not ones in which
—(A A —A) is untrue, which is what the question was about.

. For each of the valid forms in §6.7, give a proof that they’re valid. For each
of the invalid forms, give a counterexample.

Answer. We herein give rather abbreviated proofs (though hardly as ab-
breviated as they could be). It may be useful to give slightly more leisurely
proofs for your students.

e Excluded Middle: ¥rpg AV —A
Answer. Counterexample: let v(A) = n.

e Non-Contradiction: ¥rpg —(A A —A)
Answer. Counterexample: let v(A) = n.

e Modus Ponens: A -+ B,A¥rpr B
Answer. Counterexample: let v(A) = b and v(B) € {n,0}. Since
v(A) = b, so too is v(-=A) = b, and so v(-A V B) = b, which—by
definition—is all that’s required for v(A — B) = b. So, both premises
are true (in virtue of being gluts), but the conclusion is untrue.

e Modus Tollens: A —+ B, -B Frpg -A
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Answer. Counterexample: let v(A) = 1 and v(B) = b, in which case
v(—A) =0 and, so, v(~AV B) = b, and so, by definition of the arrow,
we have that v(A — B) = b. Since, by suppose, v(B) = b, we also
have that v(=B) = b. Hence, we have a case in which both premises
are true (designated) but the conclusion is not. Hence, the argument
form is invalid in FDE. [** Additional question for students: is the ar-
gument valid in LP? (Answer: no. The same counterexample applies. )]

Disjunctive Syllogism: AV B,—-A¥Frpr B
Answer. Counterexample: let v(A) = b and v(B) € {n,0}.

Contraposition: A - B d+ppg "B — —A

Answer. Proof: we can do both directions at once by recalling the
definition of the arrow. In particular, recall that A — B is equivalent
to mAV B, that is, that one is true-in-a-case just if the other is true-
in-that-case. Hence, =B — —A is equivalent to ——B V —A, which is
equivalent to B V —A, which is equivalent to =A V B. So, any case in
which A — B is true is one in which =B — —A is true, and vice versa.

Explosion: A,~A¥Frprg B
Answer. Counterexample: let v(A) = b and v(B) € {b,0}.

Addition: A+ppg AV B
Answer. Proof: let v(A) € {1,b}, in which case, via disjunction con-
ditions, v(A V B) € {1, b}, regardless of B’s value.

Adjunction: A,BFppg ANB

Answer. Proof: suppose that v(A) and v(B) are true (i.e., designated).
As an inspection of the ‘truth tables’ for conjunction reveals, AA B is
likewise designated. (Another way to see this is to recall that, accord-
ing to FDE, a conjunction is true iff both conjuncts are true. Hence,
any case in which A and B are true—be they ‘just true’ or at least
one of them a glut—is a case in which their conjunction is true.)

Simplification: AN B Fppgr A

Answer. Proof: the clauses on conjunction tell us that A A B is true-
in-a-case if and only if both A and B are true-in-that-case. Hence,
there’s no case in which A A B is true but B untrue.

De Morgan: =(AV B) 4t ppg —AA—B

Answer [LRD]. We have to check both options for ‘being true’ (desig-
nated). Suppose, first, that v(=(AV B)) = 1, in which case v(AV B) =
0, and so v(A) =0 = v(B), and so v(—~A) = 1 = v(—=B). Hence, if the
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premise is ‘just true’, then the conclusion is true. Suppose, now, that
v(=(AVB)) = b, in which case v(AV B) = b, in which case at least one
of v(A) and v(B) is b, and the other is in {b,0}. (This fact is evident
in the tables for disjunction.) But, then, both v(B) and v(A) are in
{b, 0}, and so—as reflection on negation conditions reveals—we have
that v(—=B) and v(—A) are in {1, b}, and hence v(—=A A =B) € {1,b},
that is, =A A =B is designated in v. Hence, if the premise is a glut
(true and false), then the conclusion is at least true. And that’s all
that matters for FDE validity.

Answer [RLD]. suppose that v(—AA—B) = 1, in which case v(—-A4) =
1 =wv(=B), and so v(A) = 0 = v(B), and so v(AV B) = 0, and so
v(=(AV B)) = 1. Suppose, in turn, that v(-A A =B) = b, in which
case both v(A4) and v(B) are in {1,b}, and at least one of v(A) and
v(B) is b. Since both v(A) and v(B) are designated, so too is v(AV B),
that is, v(A V B) € {1,b}. But since at least one of v(A) and v(B)
is b, we have—by conjunction conditions—that v(A A B) is b. Hence,
for any case v, if the premise is at least true, so too is the conclusion.

e De Morgan: =(AA B) 4Fpprg ~AV —B

Answer. Proof: we consider each option for designation, and do both
directions for each option. To begin, v(=(AAB) =1iff v(AAB) =0
iff either v(A) = 0 or v(B) = 0, iff either v(-A4) =1 or v(—B) = 1, iff
v(=AV =B) = 1. This suffices for the option in which the premise is
‘Just true’ (i.e., represented as having value 1). In turn, v(—=(AAB)) =
b iff v(A A B) = b iff both v(A) and v(B) are in {1,b} and one of
them is b, iff at least one of v(—A) and v(—B) is b, iff v(=AV —B) is
designated (i.e., at least a glut). [The tables for these operators makes
this clear on reflection.]

e Double Negation: =—A 4Fppp A

Answer. Proof: we can do this in one go by recalling negation con-
ditions in FDE. In particular, v(-—A4) € {1,b} iff v(-A) € {b,0} iff
v(A) € {1,b}. So, any case in which ——A is at least true (i.e., des-
ignated) is one in which A is too, and vice versa. [It might be useful
to recall that negation conditions are standard: a negation is at least
true iff its negatum is at least false, and a negation is at least false
iff its negatum is at least true. Here, ‘at least true’ means either true
only or true and false. Formally, at least true amounts to designated,
while at least false, in FDE, amounts to {b,0}.]

6. Explain why the following claim is true: if X Frppp A then X kg3 A.

Answer. This question is sufficiently answered in the Sample Answers sec-
tion of this chapter.
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7. Are the following argument forms valid in our basic paraconsistent (and
paracomplete) theory (viz., FDE)? Provide a proof (of validity) or coun-
terexample (for invalidity) in each case. Also, note whether or not the
given forms are valid in the basic paracomplete (viz., K3) or basic classical
theories (see previous chapters).

(a) A—-B,~A—B.. B
Answer. Focus on the primitive forms of the premises, namely, ~AV B
and -—AV B.

e Consider, first, the classical theory. Classically, we cannot have
both —=A and ——A be designated. Hence, unless B is designated,
not both of ~AV B and == AV B can be true (designated). Hence,
there’s no classical case in which both premises are true without
B’s being true too. So, according to the classical theory, the ar-
gument form is valid.

e Now, the basic paracomplete theory (viz., K3) agrees with the
classical theory in having only one designated value, and agrees
with the classical theory that not both =A and ——A can be des-
ignated. Hence, the argument above goes through for K3 too:
the argument form is valid according to K3. [Note. It’s worth
students pausing to reflect briefly on the paracomplete case. In-
tuitively, reading the arrow as ‘if’, we should expect the given
argument form to be invalid for paracomplete logics, since its va-
lidity would seem to presuppose that either A or —A is true—that
is, presuppose something akin to excluded middle. That the ar-
gument forms is valid in K3 might be taken to indicate that K3
lacks a connective that accurately models the behavior of ‘if’ (in
English, say). Of course, this point may well be used against all
of the logics canvassed so far—or in the book on the whole!]

e What about our target basic paraconsistent theory FDE? Here,
the argument form is invalid. Here, we can have both - A and
——A designated: just let v(A) = b. Now, for a counterexample to
the argument form, we simply let v(A) = b and v(B) € {n, 0}.

(b) (AVB)ANC, A— —-C . B
Answer. Again, focus on the primitive form of the second premise,
namely, =A V =C.

e (lassically, the argument form is valid. Classically, we have only
one way to make the conclusion untrue, namely, v(B) = 0. More-
over, we have only one way of make the premises true: both must
have value 1, and in particular v((AV B) AC) = 1, which requires
that v(C) = 1. Now, since v(B) = 0, we can have v(AV B) =1
only if v(A) = 1. But, now, look at the second premise (here
displayed in primitive form): A V =C. We have it so far that
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v(C) =1 and v(A) = 1, and so v(=A) = 0 = v(=C), and so
v(mAV =C) = 0. Hence, there’s no way to make the conclusion
of the argument form untrue without having at least one of the
premises untrue. And this means that we can’t have a case in
which all premises are true but conclusion untrue.

e The argument above concerning classical logic goes through for
K3; the only difference is that K3 acknowledges more than one
way to be untrue. To see that this makes no difference to the va-
lidity of the given argument form, change the above proof (con-
cerning the classical theory) at all points where B is mentioned,
and flip v(B) = 0 to v(B) = n. All steps go through again.

e What of FDE? Here, the argument form is invalid. Not surpris-
ingly, this turns on the fact that we can designate both premises
by letting A be a glut. Specifically, in the ‘formal picture’, we
let v(A) = b and v(B) € {n,0} and v(C) = 1. (NB: you could
also let v(C) = b, but we choose to be concrete here and select
just one value—namely, the classical one.) In this case, we have
v(AV B) = b, and similarly v((AV B) A C) = b, and similarly
v(A — —=C) = b. So, all premises are at least true (i.e., desig-
nated), but the conclusion isn’t.

(¢c) A B,B—>C.. A-C
Answer. Again, focus on the primitive forms of the premises, namely,
—-AV B and -B V C, and similarly conclusion —=A Vv C.

e (lassically, this is valid. Suppose, for reductio, that we have some
classical case v such that v(A — C) =0 but v(A - B) =1 =
v(B — C). Then, since v(A — C) = 0, we have that v(A) =1
but v(C) = 0. Now, either v(B) = 1 or v(B) = 0. If the former,
then v(B — (') = 0, which contradicts that v(B — C) = 1. If the
latter, then v(A — B) = 0, which contradicts that v(4A — B) = 1.
Either way, we have a contradiction. Hence, we conclude that
there can’t be a classical case in which both premises are true
but conclusion untrue.

e What of K37 The reasoning above, concerning the classical case,
goes through here too. The only other option to consider here
is the case in which the conclusion is gappy (versus false). So,
suppose that v(A — C) = n, in which case v(=A VvV C) = n, in
which case at least one of v(—A) and v(C) is n and the other
is in {n,0}. (See ‘truth tables’ for disjunction to see that last
point.) But, now, v(B) = 1 or v(B) # 1. In the former case,
v(B — C) # 1, since v(-B V C) € {n, 0} if both v(B) and v(C)
are in {n,0} (and we’re supposing that they are). But this contra-
dicts the supposition—made explicit in the reasoning above con-
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cerning the classical theory—that v(B — C) = 1. If, on the other
hand, v(B) # 1, then v(A — B) # 1, since v(~AV B) € {n,0} if,
as we're supposing, both v(=A) and v(B) are in {n,0}. But this
contradicts the supposition (made explicit in the previous reason-
ing) that v(A — B) = 1. Either way, we can’t have a K3 case in
which A — B and B — C are true (designated) but A — C not
true (not designated). So, the given argument form is valid in K3.

e What of FDE? Here, the argument form is invalid. A counterex-
ample is one in which v(B) = b and v(A4) =1 and v(C) € {n, 0}.
Working out the values of the molecular sentences reveals this to
be a case in which all premises are true (designated) but conclu-
sion untrue (undesignated).

Sample answers

Answer 6. The key point to see is that the FDE and K3 (i.e., our basic glutty—
gappy and basic gappy) theories agree on the truth conditions for all connectives;
it’s just that the former theory acknowledges more ‘semantic options’ (notably,
gluts) than the latter acknowledges. Close observation shows that, if you ignore
the gluts (e.g., the value b) in the FDE (basic glutty—gappy) theory, you simply
wind up with K3 (i.e., our basic gappy-but-no-gluts theory)! In other words, FDE
and K3 agree on all cases that don’t involve gluts: whatever the one counts as a
counterexample, the other counts as a counterexample (provided that, as above,
we're ignoring gluts). In yet other words: any case that K3 counts as a case
(and, hence, as a potential counterexample) is one that FDE counts as a case
(and, hence, as a potential counterexample). Hence, the K3 cases are a subset
of the FDE cases. And that’s the key insight: if there’s no FDE counterexample
to an argument, then there’s no K3 counterexample to the argument. Hence, if
X Frpr A (i.e., there’s no basic glutty—gappy counterexample to an argument),
then X Fg3 A (i.e., there’s no basic gappy counterexample to the argument).
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Exercises

7

Atomic Innards

1. Consider a case ¢ = (D, d) where D = {1,2,3}, and d(a) = 1, §(b) = 2,
and §(d) = 3, and F* = {1,2} and F~ = {1}. For each of the following,
say whether it is true or false. If true, say why. If false, say why.

(a)

(b)

()

ckE1 Fa
Answer. This is true, since d(a) € FT.

cko Fa
Answer. This is true, since d(a) € F~.

ckE1 - Fa
Answer. This is true, since, as in exercise (1b), we have that ¢ ¢ Fa.

ckE1 Fbv Fd
Answer. This is true, since §(b) € F*, and so ¢ =1 Fb, and so, via
disjunction conditions, ¢ =1 FbV Fd.

C ):1 FbA Fd

Answer. This is not true, since F'd is a gap-in-c, that is, neither true-
in-c¢ nor false-in-¢, and so the conjunction of F'd and F'b is a gap-in-
c. That Fd is a gap-in-c follows from the fact that §(d) ¢ F* and
o(d) & F~.

¢ k1 ~(FbV Fd)

Answer. This is not true. Note, first, that Fb is ‘just-true-in-¢’, that
is, ¢ =1 Fb and ¢ o Fb. In turn, recall, from exercise (le), that Fd is
a gap-in-c. Putting these facts together, we have that FbV Fd is itself
Just-true-in-c, that is, ¢ |1 FbV Fd and ¢ ¢ FbV Fd. But, then, the
negation of FbV Fd is just-false-in-c, that is, ¢ =9 =(Fb V Fd) but
& l?él _‘(Fb\/Fd)

C ):1 Fd— Fb

Answer. This is true. To see this, simply recall that F'd — F'b is equiv-
alent to = F'dV Fb, and recall that Fb is true-in-c. Hence, regardless of
the semantic status of =F'd (which status happens to be gappy-in-c),
the disjunction of F'b and —Fd is true-in-c.
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2.

4.

Construct a case in which Fa A =Fb is true.!

Answer. Let ¢ = (D,d) where D = {1,2} and §(a) = 1 and 6(b) = 2
and FT{1} and FF~ = {2}. [NB: we could have other cases that make the
given sentence true. We could, e.g., have a one-element domain {1} with
d(a) = 6(b) and F* = F~ = {1}, but we here give classical models when
available.|

. Construct a case in which Fla A —=Fa is true.

Answer. Let ¢ = (D,d) where D = {1} and §(a) =1 and F* = F~ = D.

Construct a case in which Fa V —Fa is neither true nor false.
Answer. Let ¢ = (D, §) where D = {1} and §(a) =1 and F* = F~ = {.

. Notice that, without imposing further constraints, a case ¢ might let () be

both the extension and antiextension of any (or all!) predicate(s) II. What
does this tell you about logical truths—sentences true-in-all cases?
Answer. It tells us that there are no logical truths in FDE. In particular,
consider the model in which ) is the extension and antiextension of all
predicates. This model is one in which all sentences are gappy. [Proving
this requires a bit of a work, and we skip it here. But your students should
be able to at least roughly see why the result holds.]

Sample answers

Answer Ic. ¢ =1 = Fa iff ¢ =9 Fa iff 6(a) € F'~. Since our given case ¢ is such
that 6(a) € F~ (since 6(a) is 1, which is in the antiextension of F in our given
case), we conclude that ¢ =1 —=Fla.

Answer 2. A case in which Fa A =Fb is true as follows. Let ¢ = (D, ), where
D ={1,2} and §(a) =1, 6(b) =2, and F'* = {1} and F~ = {2}. (NB: there are
many other cases in which Fa A =Fb is true.)

1To construct a case, you have to specify the domain, the denotations of the various names,
and the extensions and antiextensions of given predicates.
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Identity

Exercises

1. What, in your own words, is the difference between a logical and non-logical
expression? Why is the distinction important for specifying a logical theory
(a theory’s account of validity)?
Answer. We leave this to the student.

2. Discuss the following argument: not everything is identical to itself. After

all, I weighed less than 10 pounds when I was born, and I weigh much more
than that today. If I were identical to myself, then I’d both weigh less than
10 pounds and more than 10 pounds, but this is impossible.
Answer. There are lots of different things one might say about this ar-
gument, and we leave it to the students to think of things. (The same
goes for the first question above.) One idea we'd like to flag is the thought
that perhaps identity statements—and, indeed, statements in general—are
evaluated with respect to times. In particular, instead of having statements
assessed merely in a case, we might have that they’re assessed at a time in
a case. Making sense of this sort of idea is one natural step towards logical
theorizing (and, indeed, points towards one branch of philosophical logic
called tense logic or temporal logic.

3. The following questions concern the broad logical theory as sketched in
this (and the previous) chapter.
(a) Can there be any case ¢ in which b = b is untrue (i.e., ¢ 51 b =b)? If
s0, specify such a case.
Answer. No. One constraint on models is that the extension of the
identity predicate contains all ‘identity pairs’ formed out of the do-
main (i.e., all pairs (z,z) for all x € D).

(b) Can there be any case ¢ in which b = b is false (i.e., c |Fg b= 0)7 If
s0, specify such a case.
Answer. Yes. Just have a model such that (5(b),d(b)) € EZ.

(¢) Can there be cases in which b = ¢ is neither true nor false?
Answer. Yes. Just have a model such that (5(b),d(c)) ¢ EF and
(0(b),d(c)) & EZ, where, of course, §(b) # d(c). (See answer to ex-
ercise (3a) for why this non-identity has to hold if {§(b),d(c)) is not
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in the extension of the identity predicate.)

(d) Can there be cases in which b = ¢ is both true and false?
Answer. Yes. Just have a model such that (5(b),d(c)) € £F and
(0(b),d(c)) € €.

4. What constraints would you impose on cases (particularly, the antiexten-
sion of identity) to rule out ‘gappy’ identity claims (where an identity claim
is gappy in a case iff neither it nor its negation is true-in-the-given-case)?
Answer. This is sufficiently answered in Sample Answers.

5. What constraints would you impose on cases to rule out ‘glutty’ identity
claims (where an identity claim is glutty in a case iff both it and its negation
are true-in-the-given-case)?

Answer. A sufficient condition is that £ N EZ = 0 for all models.

6. What constraints would you impose on cases to ensure that (as per classical
thinking) every identity sentence is either true or false but not both (i.e.,
true-in-a-case or false-in-a-case, but not both)?

Answer. We impose the previous two conditions, namely, £ UEZ = D x D
and EX NEZ = 0.

Sample answers

Answer 4. First, notice that some identity claims can never be gappy since they
are true-in-all cases: namely, all of those identity claims of the form a = a. (A
glance at the constraints on the extension of ‘=" shows that o = « is true-in-all of
our cases, for any name «.) On the other hand, we can get gappy identity claims
that involve more than one name (e.g., a = b or the like). (See your answer to
Exercise 3.c above.) To remove such gaps from identity claims, we simply demand
that, for every case ¢, the union of the extension and antiextension of identity
(i.e., of ‘=") contains all ordered pairs from the ¢’s domain; in other words, we
impose £X UEZ = D x D. (If you've forgotten your set-theoretic notions, you
should turn back to Chapter 3 for a refresher!) With this constraint on the
identity predicate, there can be no pair (z,y) of objects, with  and y from D,
that’s in neither the extension nor antiextension of the identity predicate. And
this, given the definition of truth in a case and falsity in a case, ensures that
identity claims cannot be gappy.
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Everything and Something

1. Consider a case ¢ = (D,d) where D = {1, 2, 3} and é(a) = 1, 6(b) = 2,
and §(d) = 3, and F* = {2,3} and F~ = {1}. Additionally, where R is a
binary predicate, let RT = {(1,2),(1,1)} and R~ = {(1,1),(1,2),(1,3)}.
For each of the following, say whether it is true or false. If true, say why.
If false, say why.

(a)
(b)
()
(d)
()

(2)

(h)

(i)

¢ 1 VaFzx

¢ o VaFx

¢y JxFx

¢ o JxFx

¢ =1 VeRxb

Answer. The truth conditions for the universal quantifier tell us that
¢ 1 VazRxb iff all of Rab, Rbb, and Rdb are true-in-c. However,
¢ 1 Rbb, since 6(b) = 2 but (2,2) ¢ R*. (Similarly, ¢ =1 Rdb.)
So, claim (1e) is false: ¢ &1 VaRxb.

¢ Eo VzRxb

Answer. The falsity conditions for the universal quantifier tell us that
¢ o Yz Rzb iff at least one of Rab, Rbb, or Rdb is false-in-c. In fact,
¢ =0 Rab, since 6(a) =1, §(b) = 2, and (1,2) € R™. So, claim (1f) is
true: ¢ =g Vo Raxb.

¢ 1 JzRax
Answer. We know that ¢ =1 JzRax iff at least one of Raa, Rab,
or Rad is true-in-c. And indeed, Raa is true-in-c, since d(a) = 1

and (1,1) € R*. (Similarly, Rab is true-in-c.) So, claim (1g) is true:
¢ E1 3z Rax.

¢ Eo JzRax

Answer. We know that ¢ |Eg xRax iff all of Raa, Rab, and Rad are
false-in-c. And in fact, this is the case, since (1,1),(1,2), and (1, 3)
are all in R~. So, claim (1h) is true: ¢ =9 JzRax.

¢ E1 Vz(Rab — Fx)
Answer. We know that ¢ =1 Vz(Rab — Fux) iff all of Rab — Fa,
Rab — Fb, and Rab — Fd are true-in-c. Remember, a sentence of
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the form A — B is true-in-c iff either A is false-in-c or B is true-in-c.
Here, A is Rab, in all three of the sentences we're concerned with.
Since d(a) = 1, §(b) = 2, and (1,2) € R™, Rab is false-in-c. Thus,
Rab — B is true-in-¢, no matter what B is; all three of the sen-
tences we're concerned with are thus true-in-c. So, claim (1i) is true:
¢ E1 Vo (Rab — Fz).

(j) ¢ 1 JaVyRay

Answer. We know that ¢ =; JaVyRzxy iff at least one of VyRay,
VyRby, or YyRdy is true-in-c. But none of these is true-in-c. Let’s
focus on VyRay. This is true-in-c iff all of Raa, Rab, and Rad are
true-in-c, but since d(a) = 1, §(d) = 3, and (1,3) ¢ R*, Rad is not
true-in-c. Thus, VyRay isn’t true-in-c either. Similar reasoning will
show that neither VyRby nor VyRdy is true-in-c. Since none of the
three sentences we’re concerned with is true-in-c, neither is dzVyRxy.
So, claim (1j) is false: ¢ [~ JaxVyRxy.

(k) ¢ 1 ~FxVyRay
Answer. We know that ¢ =1 —3aVyRzxy iff ¢ o JaVyRzy, and that
this latter holds iff all of VyRay, YyRby, and VyRdy are false-in-c.
Consider VyRby. This is false-in-c iff at least one of Rba, Rbb, or Rbd
is false-in-¢, but none of these is false-in-c. After all, none of (2,1),
(2,2), or (2,3) appears in R~. Thus, VyRby is not false-in-c. (Similar
reasoning can be used to show that VyRdy is also not false-in-c.) Thus,
¢ o JxVyRry, and so claim (1k) is false: ¢ 1 —-JaVyRay.

(1) ¢ =0 Ve3yRzy

2. Construct a case in which YzGz V Vz—Gz is not true.!

Answer. There are many such cases. Here is one: a case ¢ = (D, ) such
that D = {1,2}, 6(a) = 1, 6(b) = 2 (if there are other names around, ¢ can
do whatever you like with them), Gt = {1}, and G~ = {1} (if there are
other predicates around, they can receive any old extensions and antiex-
tensions). Given this setup, we have that ¢ =, Gb, so ¢ & VeGr. We
also have that ¢ &9 Gb, so ¢ =1 —Gb, and so ¢ &1 Vz—Gz. Putting these
together, we have that ¢ £, VeGx vV Vz—Gz. (Note that a played no role
in the reasoning here; the reason it’s important that d(a) =1 is so we are
sure that everything in the domain of ¢ has a name in c.)

. Give a case in which Vz(Gx — Hx) is true but Va(Gxz A Hx) is not true.

Answer. There are many such cases. Here is one: a case ¢ = (D, §) such that
D = {23}, da = 23 for every name o, Gt =0, G— = {23}, HT = {23},
and H~ = (. Since there is only one member of the domain, it doesn’t

1As in Chapter 7, to construct a case, you have to specify the domain, the denotations of
the various names, and the extension and antiextensions of given predicates.
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matter which name we use; what goes for one name will go for all the
others. Let’s take a. We have that ¢ =1 Ga — Ha, since ¢ =1 -Ga. (We
also have that ¢ =1 Ha, which would suffice as well.) Since this will hold
for every name, we have that ¢ =1 Vo(Gz — Hzx). On the other hand, we
have that ¢ [£1 Ga, so ¢ 41 Ga A Ha. Thus, ¢ &1 Vo(Gx A Hz).

. The argument from §9.1 about Agnes and cats, from (3) and (4) to (5), has
the form Vz(Cx — Sz),Ca . Sa. In which of our three logical theories is
this argument valid? (Give a counterexample for any theory in which the
argument is invalid.)

Answer. This argument is valid as long as the Exclusion constraint is in
place; thus, it is valid according to the paracomplete (non-paraconsistent)
account, and according to the classical account. There are many (para-
consistent) counterexamples. Here is one: a case ¢ = (D, §) such that D =
{Shakespeare}, §(«r) = Shakespeare for every name o, C* = {Shakespeare},
C~ = {Shakespeare}, ST =0, and S~ = {Shakespeare}. For any name «,
we have that ¢ =9 Ca, and thus ¢ |=; ~Ca. Therefore, ¢ =1 Ca — Sa.
Since this holds for every name «, ¢ =1 Va(Cx — Sz). The first premise is
thus true-in-c. As for the second premise, we can see directly that ¢ =1 Ca,
since d(a) € CT. But ¢ [£1 Sa, since §(a) ¢ ST. Thus, ¢ is a counterexam-
ple to this argument. (Note that ¢ doesn’t satisfy the Exclusion constraint.)

. Which of the following best expresses that nothing is horrible? Justify your
answer by appealing to the truth and falsity conditions of the quantifiers.

(a) “VzHx

(b) ~JxHzx

Answer. The best choice is (b): ~3xHx. The claim that nothing is horrible
is true iff everything is not horrible; equivalently, iff everything is in the
antiextension of horrible. And indeed, —3xHx is true-in-a-case-c iff Iz Hx
is false-in-c¢, which is the case iff Ha is false-in-c¢ for every name «. If H
represents horrible, then these are just the truth conditions we're after. On
the other hand, -VxHzx is true-in-a-case-c iff Vx Hx is false-in-c, which is
the case iff Ha is false-in-c for some particular name «. If H represents
horrible, then these are not the truth conditions we want: these are the
truth conditions of There is something that’s not horrible, or Not everything
s horrible.

Now, let’s turn to falsity conditions. The claim that nothing is horrible is
false iff something is horrible; equivalently, if something is in the extension
of horrible. Indeed, —3x Hx is false-in-a-case-c iff Ix Hx is true-in-c, which
is the case iff Ha is true-in-c for some particular name «. If H represents
horrible, these are just the falsity conditions we're after. On the other hand,
—VxHz is false-in-a-case-c iff VeHz is true-in-c, which is the case iff Ha
is true for every name «. If H represents horrible, then these are not the
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falsity conditions we want: these are the falsity conditions of, again, There
is something that’s not horrible, or Not everything is horrible.

6. Do the two-way-validity claims hold in our current paraconsistent (and
paracomplete) theory with quantifiers—a theory we’ll call ‘FDE’ (even
though we now have quantifiers)? Justify your answer.

(a)

VeFz 4F —-Jx—-Fx

Answer. Yes, this two-way validity claim holds. To show this, we need
to show two things: first, that any case ¢ such that ¢ =1 VaFz is
also such that ¢ 1 -3z—Fx; and second, that any case ¢ such that
¢ =1 =3z~ Fz is also such that ¢ =1 Vo Fx.

The first part first. Suppose ¢ = (D, ) is such that ¢ =1 VaFz. Then
every name « must be such that ¢ =1 Fa. This means that every
name « must be such that ¢ =9 =Fa, which is enough to guarantee
that ¢ o9 Jz—Fz, and so ¢ =1 =Jz—Fx.

The second part second. Suppose ¢ = (D, §) is such that ¢ |51 ~Jz—Fz.
Then ¢ =g Jz—Fz, and so every name « must be such that ¢ ¢ = Fa.
Thus, every name « is such that ¢ =1 Fa, and so ¢ = Ve Fa.

deFx 4+ -Va—-Fx

Answer. Yes, this two-way validity claim holds. To show this, we need
to show two things: first, that any case ¢ such that ¢ =y JxFx is
also such that ¢ |1 —-Vo—Fx; and second, that any case ¢ such that
¢ =1 —Va—Fz is also such that ¢ =1 3z Fz.

The first part first. Suppose ¢ = (D, §) is such that ¢ =1 JxFx. Then
there must be some name « such that ¢ =1 Fa. This means that
a must be such that ¢ =9 =Fa, which is enough to guarantee that
¢ Eo Vz—Fz, and so ¢ |1 “Vz—Fz.

The second part second. Suppose ¢ = (D, §) is such that ¢ |51 =Vz—Fz.
Then ¢ =g Vz—Fx, and so some name o must be such that ¢ =g = Fa.
Thus, « is such that ¢ =1 Fa, and so ¢ =1 JzFz.

Sample answers

Answer Ia. Claim (1a) is false: VaFz is not true-in-our given case. To show as
much, we invoke the truth conditions for the universal quantifier, which has it
that ¢ =1 VaFx iff ¢ =1 Fa for all names « such that §(«) € D. Hence, if
each of Fa, Fb, and Fd are true-in-our given ¢, then so too is VxFz. To figure
out whether these (atomic) sentences are true, we need to consult the truth
conditions for atomics. Quick consultation reveals that Fa is true in ¢ iff §(a) is
in F™. But §(a) = 1, and 1 ¢ FT. Hence, c |1 Fa, and so, as above, ¢ £ Vo Fx.

Answer 1b. Claim (1b) is true: Va Fz is false-in-our-given-c. The falsity conditions
(i.e., conditions for =q) for the universal quantifier tell us that ¢ o VaFz if



Everything and Something 51

any of Fa, Fb, or Fd are false-in-c. Figuring out whether any of these (atomic)
sentences is false-in-c involves consulting the falsity conditions for atomics. Quick
consultation reveals that Fa is false-in-c iff §(a) is in F~. But §(a) = 1, and
1 € F~. Hence, ¢ |=¢ Fa, and so, as above, ¢ =g VzFz.

Answer 1c. The truth conditions for the existential quantifier tell us that ¢ =1
JdxFx iff either Fa, F'b or Fd is true-in-c. Truth conditions for these atomics
reveals that ¢ =1 Fb (similarly for Fd) since §(b) = 2 and 2 € F* (similarly,
5(d) =3 and 3 € F'T). So, claim (1c) is true: ¢ =y JxFx.

Answer 1d. The falsity conditions for the existential quantifier tell us that ¢ |=q
JxFz iff each of Fa, Fb, and Fd is false-in-c. Falsity conditions for these atomics
reveals that ¢ ¢ Fb (similarly for Fd) since 6(b) = 2 but 2 ¢ F~ (similarly for
d with 3 ¢ F7). So, claim (1d) is false: ¢ [ JxFz.

Answer 11. Claim (11) is true: Va3yRxy is false-in-our-given-case. By the falsity
conditions for the universal quantifier, we have that ¢ |=¢ Vz3yRzy if and only
if ¢ =9 JyRay for some name « such that é(a) € D. Is there such a name «
such that ¢ =¢ JyRay? Yes: the name a fits the bill: ¢ = JyRay. After all, by
the falsity conditions for the existential quantifier, ¢ =g JyRay iff ¢ =9 Raa for
all names « (such that d(a) € D). So, ¢ ¢ JyRay iff ¢ =9 Raa and ¢ =9 Rab
and ¢ =9 Rad. But that’s exactly what we have in our given case: each of Raa,
Rab and Rad is indeed false-in-c, since d(a) = 1, §(b) = 2, 6(d) = 3, and the
antiextension of R contains each of the pairs (1,1), (1,2}, and (1, 3).
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Speaking Freely

Exercises

1. Is the following argument valid in our ‘freed up’ theory? Explain your
answer. !

VeFx . Pb— Fb

(Hint: don’t forget about cases where 6(b) ¢ E!)

Answer. No, it’s not. We can make a counterexample: a case ¢ whose do-
main D = {1,2}, and whose set F of existent things is {1}. If we now
suppose that §(b) = 2, that F* = {1}, and that P~ = (), we have a coun-
terexample. (We can let F~ and P be whatever we like.) Since all names
a such that §(a) € E are such that ¢ =1 Fa, we have that ¢ |1 VaFz.
However, ¢ 1 —Pb, and ¢ }~; Fb, so ¢ =1 Pb — Fb; it is a counterexam-
ple.

2. Specify a case in which F'b A Ga, -3xFx, and -3xGx are all true.
Answer. The following case will work: a case ¢ such that D = {1,2,3},
§(a) = 2,6(b) =3, E={1}, F* = {3}, F~ = {1,2}, Gt = {2}, and
G~ = {1,3}. It’s clear that ¢ =1 Fb A Ga. To see that ¢ =1 -JzFx, we
should verify that ¢ =g 3z Fz; this requires that for any name «, whenever
d(a) € E, ¢ =g Fa. Since 6(a) € E iff §(a) = 1, this amounts to verifying
that 1 € F~, which is the case. Similar reasoning shows that, since 1 € G—,
¢ |E1 73xGx. (Many other cases will work as well.

3. Specify which of the following are valid arguments, and justify your answer.

(a) VeFx . Fa

(b) FbAGH .. Jx(Fx A Gx)
Answer. This argument is not valid on the freed-up theory. To see
this, consider a case ¢ such that no name « such that §(a) € FE
is such that and ¢ |1 Fa A Ga. This will be enough to guarantee
that ¢ &1 Jx(Fx A Gz). However, if 0(b) € E, it can still be that
¢ 1 Fb A Gb; that’s our counterexample.

(¢) -FxFx . —~Fb
Answer. This argument is not valid on the freed-up theory. To see
this, consider a case ¢ such that every name « such that §(a) € E is

IHere (and below), we’re using ‘.. just to separate premises from conclusion.
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such that ¢ g Fa. This is enough to guarantee that ¢ =1 —3zFx.
However, if §(b) € E, it can still be that ¢ }~¢ Fb, and so ¢ [ —Fb.
This is our counterexample.

(d) =Fa..-VoFz
Answer. This argument is not valid on the freed-up theory. To see
this, consider a case ¢ such that every name « such that §(«) € E is
such that ¢}~ Fa. This would guarantee that ¢ g VaFz, and so
¢ &1 Vo Fx. However, if §(a) ¢ E, it can still be that ¢ =¢ Fa, and
so ¢ =1 = Fa. This is our counterexample.

4. If only the objects in E exist in a given case, but E C D (for any case),

what is the ‘ontological status’ of elements in {z : x € D and = ¢ E}, the
so-called complement of F relative to D. (The complement of E relative
to D is often denoted by either ‘D \ E’ or ‘D — E’)?

Answer. There are a number of ways to answer this; one way to proceed
is by example, as the chapter has. What is the ontological status of Guy
Stewart, or other nonexistent things that we have names for, like Pegasus?
The most natural thing to say, it seems, is that these things don’t exist.
That was the whole point of Guy Stewart: almost all we know about him
is that he doesn’t exist. But there are other options for answers that one
might sensibly give here. (Perhaps Guy Stewart exists in some attenuated
way, or as an abstract object, or in some other realm, or ...)

. If ‘Guy Stewart’ really doesn’t denote anything, then ‘Guy Stewart’ doesn’t

denote anything—full stop. So, if ‘Guy Stewart’ doesn’t denote anything,
then it doesn’t denote anything in the ‘big domain’ D. What, if anything,
does this suggest about our formal modeling of the matter?

Answer. Again, a number of answers are possible. If one accepts the rea-
soning in the question, it seems to lead to the conclusion that the modeling
method described in this chapter isn’t really a sensible way to proceed in
the presence of names for nonexistent things. After all, the models crucially
allow that there might be some things in D but not in F—if we conclude
that there can’t be any such things, we are effectively sticking with our
‘unfree’ models.

6. You might reject that there are predicates that are true of objects that

don’t exist. (E.g., you might reject that ‘Agnes is thinking about .’ is true
of the so-called object Guy.) Instead of drawing the lesson that some of our
predicates can be true of objects that don’t exist, what other lessons might
you draw from the Guy Stewart story?

Answer. There are any number of options here. Some options that are com-
patible with the idea that predicates cannot be true of objects that don’t
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exist will find things that do exist to stand in. For example, instead of tak-
ing a name to refer (impossibly) to the nonexistent object Guy Stewart,
one might take the name to refer to the existent concept of Guy Stewart.
This would need to be supplemented with some kind of story about how
there can be a concept of a nonexistent thing, and how concepts play into
the truth of sentences like ‘Guy Stewart is my imaginary friend’.

7. We have said (in this and previous chapters) that existence claims like b
exists have the form Jz(z = b). You might be wondering about a different
approach: treating ‘exists’ as a more standard, quantifier-free predicate.
How might this go? Is the predicate to be treated as a logical expression?
If so, what are the constraints on its extension and antiextension? If the
predicate is non-logical (i.e., its extension and antiextension get no special
constraints aside from those imposed on all predicates by the kind of cases
involved), how do existence claims like b exists relate to existential claims
like Jz(x = b)? What, in general, is the logic of your proposed existence
predicate? (This question is left wide open as an opportunity for you to
construct your own alternative logical theory of existence.)

Answer. As you can imagine, there is a large variety of possible answers
here. One natural approach is to use the ‘free’ cases we’ve defined in this
chapter, but keep the old truth- and falsity-conditions for V and 3, so that
quantified sentences still depend only on D. One can then use F to interpret
a new predicate E, by defining E* = E and E~ = D — E. This would mean
that E is always consistent and complete. Alternately, we could go back to
the old ‘unfree’ cases, and simply treat E as an ordinary predicate, allowing
for existence gluts and existence gaps.

Or, we could take either of these approaches, but stick with the ‘free’
clauses for the quantifiers, and use these clauses to create some connection
between 3 and E. There are plenty of options!

Sample answers

Answer 3a. The argument from VazFz to Fa is not valid (according to the current
freed up theory). To see this, let ¢ be any of our (current, freed-up) cases in which
d(a) € E (i.e., in which the denotation of name a is not among the objects that,
according to ¢, exist), and let §(a) € F* (i.e., the denotation of a is not in the
set of objects that, according to ¢, have the property F), and let everything else
in D be in the extension of F' (i.e., be in F*). This case is a counterexample to
the given argument.
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Unless otherwise stated, the Mfde truth conditions (see §11.4.2) are assumed in
the following exercises.

1. Which of the following arguments are valid? Justify your answer (with a
proof or counterexample).

(a)

O(FbA Fa) .0OFbANOFa

Answer. This argument is valid. Consider any case ¢ such that [¢, @]
O(FbA Fa). This means that, for all worlds w in ¢, [¢,w] 1 FbA Fa.
Thus, all worlds w in ¢ must be such that [c,w] 1 Fb—and so
[c,@Q] =1 OFb—and such that [c,w] 1 Fa—and so [¢,@Q] |=; OFa.
But then it must be that [¢, @] |=; OFb A OFa. So there can be no
counterexample.

OFb .. OFb

Answer. This argument is valid. Consider any case ¢ such that [c, @] =
OFb. This means that, for all worlds w in ¢, [c,w] =1 Fb. In partic-
ular, it must be that [¢, @] =; Fb. But then there is a world w in
c—namely @—such that [c, w] =1 F'b, and so [¢, @] =1 OFb.

OFb ... OFb

Answer. This argument is not valid. There are many counterexamples;
here is one. Consider a case ¢ = (W, @, D, £, ¢) such that W = {@Q, w},
D = {1}, §(a) = 1 for every name o, Fg =0, Fg = {1}, F} = {1},
and F, = (. (It doesn’t matter what £ does here.) Since F} = {1},
and 6(b) = 1, we have that [c,w] 1 Fb, thus [¢,@Q] |; OFb. But
since 6(b) ¢ Fgd, [c,Q] £ Fb, and so [c,@] F=; OFb. Thus, ¢ is a
counterexample to the argument.

O(a =a) .. O3z(x = a)

Answer. This argument is not valid. There are many counterexam-
ples; here is one. Consider a case ¢ = (W, Q, D, E,0) such that W =
{@}, D = {1},6(a) =1 for every name «, and Eq = (. We have that
[¢,@Q] =1 @ = a (since the extension of = must include (1,1)), and

1Here, we use ‘. merely to separate premises and conclusion. (The following are arguments
from our formal language, not argument forms.)
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since @ is the only world in ¢, this means that [¢,@Q] =1 O(a = a).
However, [c, Q] |1 Jz(x = a). Since there is nothing in Fa, no claim
of the form 3x A can be true-at-@-in-c. But since @ is the only world
in ¢, this means that [c, Q] &, O3z (z = a). So ¢ is a counterexample
to the argument.

(e) O—-Jz(z =a) ... ~(a =a)
Answer. This argument is not valid. There are many counterexam-
ples; we’ll build one from that counterexample offered in Answer 1d.
Take the counterexample from Answer 1d, and specify in addition
that the antiextension of = at @ in ¢ is empty. Since Eq is empty,
[c,Q] o Jz(x = a). (Remember, if there is nothing in Eq, then ev-
ery name « such that §(a) € FEq (all none of them!) is such that
[, Q] Eg o = a.) Thus, [¢,@Q] =1 =Jz(x = a), and since @ is the only
world in ¢, this means that [¢, @] |=; O-3z(x = a). But, since the
antiextension of = at @ in ¢ is empty, we know that [¢, Q] 59 a = a,
s0 [¢,@Q] &1 —=(a = a). Thus, ¢ is a counterexample to the argument.

(f) OCFa .. ¢0OFa
Answer. This argument is not valid. There are many counterexam-
ples; we’ll reuse the counterexample ¢ from Answer 1lc, which is a
counterexample to this argument as well. Since 6(a) € F, we have
that [¢,w] 1 Fa, so every world w’ is such that [c,w’] &1 OFa,
so [¢,@] =y OCFa. On the other hand, since d(a) ¢ FZ, we have
that [e, @] &1 Fa, so every world w’ is such that [¢,w’] 5 OFa, so

[c, Q] F51 ©OFa. Thus, ¢ is a counterexample to the argument.

(8) ~03a(x = a) - ~O(a = a)

Answer. This argument is not valid. There are many counterexam-
ples; we’ll reuse the counterexample ¢ from Answer le, which is a
counterexample to this argument as well. We showed in Answer le
that [e, Q] =¢ Jz(x = a). Since @ is the only world in ¢, this means
that [¢, Q] =g ¢Tz(xz = a), and so [¢, Q] =1 =CTz(x = a). We also
showed that [c, @] =9 a = a, which means (since @ is the only world
in ¢) that [e¢, Q] &g O(a = a), and so [¢, Q] j£; =O(a = a). Thus, ¢ is
a counterexample to the argument.

2. Are there cases in which a = a is not true? If so, provide one. If not, show
as much.

Answer. No, there are not. To be a case in which a = a is not true is to
be a case ¢ such that [¢,a] 1 a = a; that is, a case in which (a, a) is not
in the extension of = at @Q. But, given our restrictions, this can never be.
Thus, there is no case in which a = a fails to be true.
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3. Are there cases in which O(a = a) is not true? If so, provide one. If not,
show as much.

Answer. No, there are not. To be a case in which O(a = a) is not true is
to be a case ¢ in which there is a world w such that [c, w] &1 a = a; that
is, a case in which (a, a) is not in the extension of = at w. But, given our
restrictions, this can never be. Thus, there is no case in which O(a = a)
fails to be true.

4. Is ¢(a = a) logically true?

Answer. This is answered in the text (viz., ‘sample answers’).

5. Explain how to modify Mfde to get the following results (i.e., for the re-
sulting, modified consequence relation). If no modification is required for
a given item, prove as much.

(a)

(d)

OANO-AF B

Answer. There are a number of modifications which could work. One
is the exclusion constraint. If no predicate’s extension at a world over-
laps with its antiextension at that world, then there can never be a
world in any case at which both A and —A hold, for any A (see an-
swer 6a below). If A A O—-A were true in a case, though, then both
A and —A would have to hold at every point in that case. In par-
ticular, they’d have to hold at @. Since this would be ruled out by
the exclusion constraint, no case satisfying the exclusion constraint
could ever make OA A O-A true. Thus, no such case could provide a
counterexample to this argument.

FOAvV-DOA

Answer. There are a number of modifications that could work. One
is the exhaustion constraint. If every predicate’s extension at a world
and antiextension at that world, taken together, exhaust the domain,
then C'V —=C will always be true at every point in every case, for any
sentence C' (see answer 6b below). If we take the instance where C is
the sentence OA, then we have the target sentence: DA V -OA. Since
it must be true at every point in every case, it must be true at @ in
every case; there will be no counterexample possible.

FO(AV-A)

Answer. There are a number of modifications that could work. Again,
the exhaustion constraint will do the job. With the exhaustion con-
straint in place, every world in every case must make AV —A true,
and so @ in every case must make O(A V —A) true.

DA, 0-AF B
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Answer. There are a number of modifications that could work. One
of them is the exclusion constraint. If OA is true at @Q in a case ¢,
then A must be true at every world in ¢; and if ¢—A is true at @
in ¢, then there must be some world in ¢ where —A is true. At that
very world, both A and —=A must be true; if this is ruled out by the
exclusion constraint, then no case can make both premises true, so
there can be no counterexample.

(e) FVxOTy(y = x)

Answer. This already holds in Mfde; no modification is necessary. To
see this, we’ll assume that there is some counterexample ¢, and show
that the supposition goes wrong. As ¢ a counterexample, we know
that [c, Q] & VoeOTy(y = z). Thus, there is some name a such that
d(a) € Eg and [c,@] 41 OJy(y = a). This means that there is no
world w such that [¢,w] =1 Jy(y = a). In particular, @ cannot be
such a world. So [¢, Q] }~; Jy(y = a). From this, we can conclude that
there is no name b such that 6(b) € Eq and §(b) = §(a). But there is:
a itself! So there can be no such case, no counterexample.

6. Suppose that we define a world w (of a case ¢) to be consistent iff there’s
no sentence A such that [c,w] =1 A and [¢,w] =¢ A. Similarly, suppose
that we define a world w (of a case ¢) to be complete iff there’s no sentence
A such that [c,w] &1 A and [e,w] g A (i.e., the world is such that
every sentence is either true at the world or false at the world). Precisely
formulate and explore the following, narrower (though stronger) variations
on Mfde.

(a) K3 Modal: the cases are all Mfde cases that contain only consistent
worlds (though not necessarily complete).
Answer. We can get this by imposing the exclusion constraint at every
world: requiring that no predicate can have an extension at a world
that overlaps its antiextension at that world. Just as imposing this
exclusion constraint in our non-modal systems means that we will
never have a case at which both A and —A are true, for any sentence
A, so too does imposing the constraint here mean we’ll never have a
world in any case at which both A and —A are true, for any sentence

A.

Remember, by adding restrictions (and so removing cases), we can
never make a valid argument become invalid, but we can make an
invalid argument become valid. So all the arguments in exercises 1-5
that were valid in Mfde will remain valid with this new restriction.
In exercise 1, no new arguments become valid as a result of this re-
striction; the counterexamples given above for the invalid arguments
already meet this restriction. Since exercises 2—4 all present things
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(c)

that were valid in Mfde anyway, they will remain valid. In exercise
5, 5a and 5d would become valid upon adding this constraint, as dis-
cussed above.

LP Modal: the cases are all Mfde cases that contain only complete
worlds (though not necessarily consistent).

Answer. We can get this by imposing the exhaustion constraint at
every world: requiring of every predicate that its extension at a world
and its antiextension at that world, taken together, exhaust the do-
main. Just as imposing this exhaustion constraint in our non-modal
systems means that AV —A is true in every case, for any sentence A,
so too does imposing the constraint here mean that every world in
every case will make AV —A true, for any sentence A.

As above, in exercise 1, no new arguments become valid as a result of
this restriction; the counterexamples given above for the invalid ar-
guments already meet this restriction. Since exercises 2—4 all present
things that were valid in Mfde anyway, they will remain valid. In ex-
ercise 5, bb and 5¢ would become valid upon adding this constraint,
as discussed above.

Classical (though ‘free’) Modal: the cases are all Mfde cases that con-
tain only consistent and complete worlds.?

Answer. We can get this by imposing both the exclusion and the
exhaustion constraint at every world. This will ensure both that every
world in every case makes AV —A true, for every sentence A, and that
no world in any case will make both A and —A true, for any A.

As above, in exercise 1, no new arguments become valid as a result of
this restriction; the counterexamples given above for the invalid argu-
ments already meet both restrictions. Since exercises 2—4 all present
things that were valid in Mfde anyway, they will remain valid. In exer-
cise 5, all of 5a—5d would become valid upon adding these constraints,
as discussed above.

For each of the resulting logics in (6a)—(6c), go through all questions from
Exercises 1-5 again but focus on the given narrower logic.

7. What other connectives might be treated along ‘worlds’ lines? What if,
instead of thinking of the elements in W as worlds, we think of W as
containing points in time. Now consider the connectives it is always true
that. .. and it is sometimes true that. ... If we treat these connectives along
our box and, respectively, diamond lines, what sort of ‘temporal logic’ (i.e.,
logic of such temporal connectives) do we get? Related question: what sort
of ‘ordering’ on your points in W do you need to give in order to add

2The freedom comes from our speaking-freely approach to cases. See Chapter 10.
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plausible it will be true that. .. and it was true that. .. connectives into the
picture? (E.g., do your points of time have to be ordered in the way that,
e.g., the natural numbers are ordered?)

Answer. This question is an invitation to think some things through; many
different answers are possible. When it comes to taking an ordering into ac-
count, the answers will depend on one’s picture of the structure of time (dis-
crete? continuous? branching into the future, or one single future? branch-
ing into the past, or one single past?). There will, though, have to be some
appeal to this order in the truth- and falsity-conditions for it will be true
that. .. and it was true that. . .. For example, one might define a connective
F for it will be true that. .. as follows:

o [c,w] 1 FA iff there is a time w’ after w such that [c,w'] =1 A.

o [c,w] o FA iff every time w’ after w is such that [¢,w'] g A.
Here, the clauses depend only on what happens after w. The truth- and
falsity-conditions for it was true that ... should likewise depend only on
what happens before the time in question.

Sample answers

Answer 4. Yes, O(a = a) is logically true. Suppose, for reductio, that it is not
logically true, in which case there must be a case (universe) in which ¢(a = a)
is untrue, that is, a case ¢ such that [c, @] 1 O(a = a). But, then, by the truth
conditions for the diamond, there must be no world in our given case (universe)
at which a = a is true. But by the constraints on identity (viz., that the extension
of the identity predicate contains all pairs of identical objects from the domain of
the given case), a = a is true at all worlds. Hence, we’ve run into an unacceptable
contradiction (viz., that there is both some world in our case and no world in
our case in which a = a is true), and so we reject our initial supposition that
O(a = a) is not logically true. We conclude, then, that &(a = a) is logically
true.
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Exercises

1.

Prove that VAF A and A+ VA (i.e., that our Actuality operator, defined
above, both Captures and Releases).

Answer. Suppose that VA is true in in a case ¢; that is, that [c¢, Q] =1 VA.
We know that this happens iff [¢,@] =1 A, so it must be that A is also
true in ¢. Thus, the argument from VA to A is valid.

For the other direction, suppose that A is true in a case c¢; that is, that
[c,Q] =1 A. This is sufficient for VA to be true at every world in c. In
particular, it is sufficient for VA to be true at @ in ¢. Thus, [¢,@Q] 1 VA
as well; the argument is valid.

. Do we have that OA - V A in the Mfde theory (expanded with V as above)?

If so, prove it. If not, give a counterexample.
Answer. This is answered in the text (viz., ‘sample answers’).

. Using the revised truth conditions (see page 166), give a countermodel to

n-Explosion: viz., A,nA ... B.

Answer. Consider the instance of the argument p,np .". . There are a num-
ber of counterexamples to this argument. Here’s one: a case ¢ such that
¢ E1p, ¢ Fo p, and ¢ £ g. Since ¢ ¢ p, ¢ =1 np by the revised truth con-
ditions. (Also, since ¢ =1 p, ¢ o np, but that’s not important here.) Thus,
both premises are true in ¢, but the conclusion is not; c is a counterexample.

. With respect to the ‘meaningless’ approach to disjunction (see §12.4), pro-

vide a case in which A is true but A V B not true (for some A and B).

Answer. Consider the instance p .. pV ¢q. This is counterexampled by a case
¢ such that ¢ =1 p, ¢ 1 ¢, and ¢ g ¢. According to the ‘meaningless’ ap-
proach, ¢ [£1 pVg, since ¢ £ ¢. So ¢ is a counterexample to this argument.

How does the ‘meaningless’ approach (see §12.4) compare with Weak Kleene
(see Chapter 5 exercises)?

Answer. The only difference is in the treatment of gluts. The Weak Kleene
system discussed in the exercises of Chapter 5 imposes the exclusion con-
straint: there are no gluts allowed. The ‘meaningless’ approach considered
in this chapter allows for glutty sentences as well as gappy sentences. As
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for what to do with non-glutty sentences, the two approaches agree. We
can see the ‘meaningless’ approach as standing in the same relation to the
Weak Kleene approach as FDE stands in to K3.

. Fill out the ‘meaningless’ approach (see §12.4) by adding predicates, quan-
tifiers, and a necessity operator. (NB: there may be more than one way of
doing this that is consistent with the basic ‘meaningless’ idea.)

Answer. As the question mentions, there will be many different ways of do-
ing this. One natural way is to simply use the truth- and falsity-conditions
for predicates, quantifiers, and modalities that were used earlier in the
book. They make just as much sense when combined with the ‘meaning-
less” approach to A and V, so that could do.

On the other hand, there is a natural sense in which A, V, and O are linked
together, in Mfde, and this approach would break some of that connection.
Think about Mfde for a moment. In that system, VzF'(x) always has the
same value as F(a) A F(b) A...ANF(z),if a,b...z are all the names. That
is, one is true at a world in a case iff the other is, and one is false at a world
in a case iff the other is. (If there are infinitely many names, the version
with A isn’t a legitimate sentence—it’s too long—but if it were the point
would still hold.) This is a sensible feature: saying that everything is F' is
very like saying this thing is F' and that thing is F' and ... the last thing if
F, too. If we take the ‘meaningless’ approach to A, and leave V alone, this
connection will be broken. We can restore it by using the following truth-
and falsity-conditions:

o [c,w] 1 VzA iff [e,w] 1 A(a/z) for all « such that 6(a) € E,,.
o [c,w] g VzA iff 1) [e,w] 1 A(a/x) for all a such that §(«) € E,,
and 2) [c,w] o A(a/x) for some « such that §(a) € E,,.

Similarly, there is a connection between A and O in Mfde that is lost if we
modify A but not O. OA is like a ‘cross-world conjunction’ in Mfde, and
we can preserve that connection on the ‘meaningless’ approach with the
following truth- and falsity-conditions:
o [c,w] =1 DA iff every w’ € W is such that [¢,w'] =1 A.
o [c,w] Fo OA iff 1) every w’ € W is such that [c,w'] 1 A, and 2)
some w’ € W is such that [c, w'] = A.
To maintain the connections between V, 3, and <, similar changes would
be necessary as well. The results:
o [c,w] 1 A iff 1) [c,w] 1 A(a/z) for all @ such that §(a) € E,,
and 2) [¢,w] =1 A(a/x) for some a such that §(«) € E,.
o [c,w] Fo FzA iff [c,w] o A(a/z) for all « such that §(a) € E,,.
o [c,w] 1 CAiff 1) every w' € W is such that [c,w'] 1 A, and 2)
some w’ € W is such that [c,w'] 1 A.
o [c,w] o CA iff every w’ € W is such that [c,w’] o A.
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One can use these modified clauses in any combination. There are certainly
other options as well.

. Invoking the definitions of ‘contingent’ and ‘broadly contingent’ from Chap-

ter 5 exercises, give what you think are the right truth- and falsity-in-a-
case conditions for a contingency operator in the otherwise Mfde setting.
(In other words: add new unary connectives to serve as an it is contingent
that. .. and it is broadly contingent that. . . operators in the otherwise Mfde
setting. What is the logic of your connective(s) like? Explore!

Answer. Here are some natural choices of truth- and falsity-conditions for
connectives C' (it is contingent that) and Cp (it is broadly contingent that):
o [c,w] =1 CAiff 1) there is a world w’ € W such that [c, w'] =1 A and
there is a world w” € W such that [c, w"] ¢ A.
o [c,w] g C A iff either 1) every world w’ € W is such that [¢, w'] 1 A
or 2) every world w’ € W is such that [c,w'] o A.
e [c,w] 1 CpA iff 1) there is a world w’ € W such that [c,w'] 1 A
and there is a world w” € W such that [¢,w”] &1 A.
o [c,w] o CpA iff either 1) every world w’ € W is such that [¢, w'] 1
A or 2) every world w’ € W is such that [c, w'] 1 A.
Other choices might work as well. Given the above definitions, added to
Mfde, we have the following validities (among others):
CA-4- CANO-A
-CA--O0AvVO-A
CpAECA
OAF-CgA
FCgAV -CgA
CgAN-CpAF B

. How might you add a necessarily consistent connective to the Mfde? What

should the truth conditions for it is necessarily consistent. .. be in a broad
Mfde setting? What about defining our target ‘necessarily consistent’ op-
erator in Mfde thus: just let CA abbreviate O—(A A —=A). What, then, is
the logic of C in Mfde? Are there Mfde cases in which CA is a glut—and,
so, true but itself ‘inconsistent’ (since also false)? Is this a problem for a
consistency operator?

Answer. Given the definition of C given in the question, we have the fol-
lowing validities (inter alia) in Mfde:

e O(AV—4) 4 CA

o O(AN-A) 4 -CA

e CA4-C-A
There will definitely be cases ¢ such that [¢,@] =3 CA A ~CA: consider
a case ¢ with just one world, @Q, and let [¢,Q] =1 p and [¢, Q] o p. In
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this case, we have [¢,@Q] |=; O(p V —p), and so [¢, @] |=; Cp. We also have
[c, Q] =1 O(p A —p), and so [¢, @] |51 "CA. Thus, [¢,@] =3 Cp A ~Cp.

On its own, this might not seem like too much trouble for a necessary
consistency operator like C. After all, the reason we introduce a necessary
consistency operator is because we recognize that some things might not
behave consistently; once we make this recognition, it doesn’t seem like
there’s any particular reason that necessary consistency claims themselves
must behave consistently.

On the other hand, there is something that might well seem off about this
necessary consistency operator anyway. It lies not in the possibility of a case
making CA A ~CA true, but rather in the first two entailments presented
above. As we can see, the first entailment tells us that any sentence that is
never gappy is necessarily consistent, according to this operator. But then C
seems more like a necessary completeness operator, and less like a necessary
consistency operator. On the other hand, the second entailment tells us that
any sentence that is anywhere glutty is not necessarily consistent; this is
closer to what we might expect.

We might avoid the suggestion of completeness by offering something like
the following truth- and falsity-conditions:

o [c,w] 1 CA iff no w’ € W is such that [c,w'] 1 AA—A.

o [c,w] =g CA iff some w’ € W is such that [c,w'] 1 AA—A.
These falsity conditions are equivalent to those of the C defined in the
question, but the truth conditions differ. One advantage of this new defi-
nition is that it seems to allow a restricted form of modus ponens: we have
CA, A, A — B+ B. After all, as we’ve seen, failures of modus ponens rely
on gluts. On the other hand, on this new definition, we can never have a
case ¢ and a world w such that [c,w] =1 CA A -CA. If we're consider-
ing logics with true contradictions, it’s not clear why we wouldn’t want to
allow them here.

(What if we allow contradictions into the language we use to describe
our cases? That is, what if we consider cases ¢ and worlds w such that
[c,w] E1 A and [e,w] £1 A? This kind of approach is well beyond the
scope of this book, but seems to recommend itself here.)

9. What other phenomena might motivate different logics? Think and explore!
Answer. This one’s wide open.

Sample answers

Answer 2. Yes, OA implies VA in the Mfde theory (expanded with the given
actuality operator). To see this, consider any case ¢ such that [¢, @] =1 OA, in
which case—by the Mfde truth conditions for the box—every world w in the
given universe (case) is one at which A is true, that is, [c,w] &1 A (for all w



68 Glimpsing Different Logical Roads

in the universe). Hence, in particular, A is true at @, that is, [¢, @] =1 A. But,
then, given the truth conditions for V, we have that [c, @] =1 VA. What we've
shown here is that any (Mfde) case in which OA is true is one in which VA is
true (given the going truth conditions for V). What we’ve shown, in other words,
is that OA implies VA.
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Tableau systems

13.1 What are tableaux?

To ask whether an argument from Ay, Ao, ..., A, to B is valid is to ask whether
there is a case in which the As are all true and B is not. Tableaux provide a
simple way to reason through questions like this. They can be seen as operating
by reductio: we start by assuming that there is such a case, and reason through
what else would have to hold if this were so. If we find that, no matter what, any
case meeting the initial supposition would have to meet conditions that no case
can meet, we conclude that there can be no such case, and so the argument is
valid. On the other hand, if we find that there can be such a case, we conclude
that the argument is valid.

It takes three steps to specify a tableau system. First, we need to say how to
start a tableau: how to record the assumption that there is a counterexample to
the argument in question. Next, we need to say how to extend a tableau: how
to tell, given that there is a case meeting certain conditions, what additional
conditions follow. And finally, we need to say when a tableau closes: how to tell
when no case can meet the conditions imposed by a tableau.

In fact, tableau have a tree-like structure, with the start (the root) at the
top. Sometimes, while extending a tableau downwards, we know if there’s a
case meeting conditions «, then there must be one meeting either conditions
B or conditions 7y, but we don’t know which. When this happens, the tableau
branches; on one branch, we add requirements $ and see what follows, and on the
other, we add requirements vy and see what follows. This can be seen in Figure
13.1. If we find that no case can meet the requirements on a branch, we close
that branch indvidually, and only pursue the other branch. In Figure 13.1, the
leftmost branch has closed (marked with x ), while the rightmost is still open. If
no case can meet either set of requirements, then no case can meet requirements
a.

This way of explaining tableaux makes them sound like a systematic way of
reasoning about cases. Although they can be seen in this way, they don’t have
to be. Tableaux are fully specifiable without reference to cases, and they form
a proof theory intimately related to more-obviously-proofy sequent calculi. (For
details of the relation between tableaux and sequent calculi, see eg (Smullyan,
1995).)
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B

X

Fig. 13.1: A branching

<A1 @>
(As @>
4,  ®)
(B o)

Fig. 13.2: The start of a tableau

13.2 Propositional tableaux

In this section, we explain how to build tableaux for the propositional systems
in the book; these systems are presented in Chapters 4-6. The book proceeds by
starting with classical cases, and considering a wider and wider variety of cases as
it goes on. This section will proceed in reverse order: we’ll give a tableau system
that characterizes Frpp, and then add to it bit by bit as we go on, ending with
a tableau system for k.. The tableaux presented throughout this supplement
closely follow those discussed in (Priest, 2008; Restall, 2005).

Our tableaux will be made up of tagged nodes: a tagged node is something
of the form (A o), where A is any sentence and o is either @ or ©. Here, @
and © are the tags, and which tag appears in a tagged node will be important
for deciding what to do with it. One way to think of the tags: a tagged node
(A @) records that A is true in a case M (M =1 A), and a node (A o)
records that A isn’t true in M (M} A).

13.2.1 Tableaux for Frpg
13.2.1.1 How to build a tableau

Starting: Suppose we want to use tableaux to show that an argument from
Ay, As, ..., A, to B is FDE-valid; that is, that A;, As,..., A, FrpE B.
This would mean that there is no case M in which all of A, A5, ... A, are
true (that is, such that M }=1 A; and M | Ay and ...and M = A,)
and B is not (that is, M B~ B). So our tableau starts by assuming that
there is such a case: we start with what’s shown in Figure 13.2.

Extending: From there, we apply our rules, generating new nodes and branches
from old. The rules for FDE tableaux are given in Figure 13.3. Each rule
starts from a node on a branch, and it either adds nodes to the end of that
branch, or it splits the end, turning the branch into two, and adds different
nodes to each of the new branches. Each rule operates only on nodes of a
certain form, but it’s not important where on a branch the node is; you can
apply a rule to the top node of a branch, any node you like in the middle,
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A-E: (ANB ®) N-E: (AN DB o)
\
(4 9
B o (4 e B 9

V-@: (AV B @) VASE (AV B o)

—A-P: (-(A A B) @) —-A-O: (-(A A B) o)

—-V-@: (=(AV B) @) —-V-6: (-(AV B) o)

(-B  ®)
—s (-(A—>B) @ |[-——o (~(A=B) o)
|
4 @) ;
S (A o) (-B ©)
— CNNONERES (md o)
(A | o) (A | =

Fig. 13.3: Tableau rules

or the very bottom node. Whichever node you apply a rule to, add the new
node(s) to the bottom of the branch.

Also, you can apply the rules in any order you like. However, it’s usually a
good idea to apply rules that don’t branch before rules that do, so far as
you can. This tends to keep tableaux shorter (or at least narrower).

Closing: A branch closes in an FDE tableau when it contains two tagged nodes
of the form (A @) and (4 ©), for any sentence A. These would
require that a case M was such that M =1 A and M }~; A, but no case
(as far as this book considers) can be like that. When a branch closes, we
write X below it, and we don’t bother applying any more rules to that
branch. If every branch on a tableau closes, we say the tableau has closed,
and the argument we used to generate the tableau is valid.

13.2.1.2 An example Figure 13.4 is an example FDE tableau, showing that
—(AAB) Frppg —AV—B. (This is one of the validities listed in §6.7 of the book;
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(A— B @)
(A @)
(B ©)

Fig. 13.5: Showing that A —» B, AVrpr B

you are asked to consider it in Exercise 6.5.) In this figure, we’ve set things up
in the appropriate way, and then applied two rules: first the V-© rule, and then
the —-A-@® rule. At this point, both branches close, so the tableau is closed, and
the argument is valid.

13.2.1.3 When a tableau doesn’t close If a tableau built from an argument
doesn’t close, even after every rule that can be applied has been applied, then
the original argument was invalid. Figure 13.5 provides an example, showing that
A — B, Arpp B. Once the beginning is in place, only one rule can be applied:
—-. This creates two branches. The right branch closes immediately, but the
left one does not, and there is nothing left for us to do. We’ve applied every rule
we can.

We can use an open completed branch, like the left branch in Figure 13.5, to
find a case that counterexamples the original argument. Here, the branch tells us
that we need to choose a case M such that M |1 = A (so M =g A), M [~ B,
and M =1 A. Any such case will provide us with a counterexample.

13.2.2  Tableauz for other logics

A case like this, though, would not be a permissible paracomplete (non-
paraconsistent) case. If we stick to the (paracomplete but not paraconsistent)
cases of Chapter 5, no case M can be such that M |1 A and M |=¢ A. Our
tableau can rule this out with a simple modification: we add a different way
for a branch to close. As before, any branch containing both (A @) and
(A ©) closes, but we also close any branch that contains both (A @) and
(—A @). This rules out cases M such that M =1 A and M = A, and so it
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gives us tableaux for the logic K3. Return to Figure 13.5. The open left branch
here would close if we applied this new rule; then the whole tableau would close.
And indeed, A — B, A k3 B.

Similarly, if we want to allow for inconsistent cases but not incomplete ones,
we should not add the above closure condition, but rather a different one: that
a branch closes if it contains both (A ©) and (—A ©). And if we want to
rule out both inconsistent and incomplete cases, we can add both new closure
conditions, resulting in tableau for ..

Parenthetical remark The tableau we arrive at by adding both new closure
conditions have an interesting symmetry to them, which can be used to simplify
them. It turns out that, with all three closure conditions in place, a branch with
(A ©) on it will close iff a branch just like it, but with (-A @) instead,
closes. Similarly, a branch with (A @) on it will close iff a branch just like it,
but with (—A ©) instead, closes. This means we can stick entirely to either
@- or &-tagged nodes, if we like, and use — to simulate the behavior of whichever
kind we don’t use. If we do this, there is no need to write the tags at all anymore;
we can simply use the bare sentences as nodes. The usual tableau presentation
for classical logic does just this; it’s equivalent to the @-only version arrived at
through this process. Without all three closure conditions in place, though, this
equivalence doesn’t work, which is why we make the tags explicit in tableaux for
our nonclassical logics. End parenthetical remark

13.3 Predicate tableaux

Tableaux for predicate logic start, and are closed, in the very same way as
tableaux for propositional logic. In particular, the difference between classical,
paracomplete, and paraconsistent remains unchanged; that’s simply a matter of
which closure rules are in play. The difference between propositional and predi-
cate tableaux is in the way predicate tableaux are extended.

13.3.1  Unfree tableaux

The rules for predicate tableaux, as you might expect, have a bit more to them
than those for propositional tableaux. We don’t need to change anything that’s
come so far; we just need to add some rules for dealing with =, V, and 4. Figure
13.6 shows the shape of the new rules.

These rules require a bit of comment. First, note that there are no rules for
nodes of the form (a = b ©), (ra=1b @), or (ra="b ©). That’s ok;
the rules in place take care of =’s effects. Also, notice that the first rule for =
doesn’t apply to any existing nodes; it generates nodes ex nihilo.

Some of these rules use terms t or u, while others use a term a. This is an
important difference. In these rules, t and u can be any terms whatsoever that
appear free on the branch. (If there are no terms free on the branch, then a new
one can be introduced.) Where a appears (in the rules V-© and 3-®), it must
be a term mew to the branch; that is, a term that does not occur free anywhere
else on the branch in question. Finally, note that a number of these rules can
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= =-@: (t=u ®)
\ (A(t)  ®)
t=t &) |
(Alw) &)
V-® (VxA(x) @) | V-6 (VzA(x) o)
\ \
(At) &) (Al ©)
3-@ (FzA(x) ®) | 3o (FzA(z) )
| |
(Ala) &) (A®) o)
—-V-@: (—VxA(z) ®) | ~-V-0: (=VzA(x) o)
| |
(Fz—A(z) ®) (Fz—A(z) o)
--3-@: (-3rA(x) ®) | --3F-6: (=IzA(x) o)
| |
(Vz—A(z) ®) (Vz—A(x) o)

Fig. 13.6: Predicate tableau rules

(Vz(Pax — Q) @)

(a=b @)
(Pbe @)
(FrQx o)

(Vz(Pbx —)‘Ql‘) ®)

(Pbc — CBC ®)

(= Pbe @) (Qc ‘ ®)
T Qe o)

X

Fig. 13.7: Showing that Vz(Pax — Qz),a = b, Pbc F k3 JzQx

be applied repeatedly, even to the very same nodes. For example, the V-@ rule,
since it has a ¢ in it, can be applied once for every term that occurs free on the
branch.

13.3.1.1 Ezample Figure 13.7 uses a tableau to show that Va(Pax — Qx),a =
b, Pbc g3 dxQx. Note that we’ve exercised some choices to keep the tableau
small; as one example, we’ve applied V-@ to get Pbc — Qc. We could as well have
used it to get, say Pbb — Qb, but that wouldn’t have helped close the tableau.
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V- (VzA(x) D) V-0 (Ve A(x) o)

/\ (Ea | D)

(Ala)  ©)
3-P: (FzA(z) ®) 3-e: (Fz A(x) o)
‘ /\

e ® o) (A4®) o)

(Al@) @)

Fig. 13.8: Free logic tableau rules

(Vz(Pz — Q) D)

(JzPzx @)
<3xQx‘ o)
(Ea ®)
(Pa @)
(Ea o) (Pa — Qa ®)
X /\
(=Pa  ®) (Qa &)

Fig. 13.9: Showing that Vz(Px — Qx), JzPx + JzQx

13.3.2  Free tableaux

When it comes to tableaux for free logics, we have to handle the quantifiers
slightly differently. Identity works just the same, as do the rules for negated
quantifiers. We introduce a new predicate E to represent existence. It doesn’t
need to officially be in the language, but we’ll use it in the course of these
tableaux. Figure 13.8 gives the quantifier rules we need (here, a and ¢t mean just
the same as before):

13.3.2.1 Ezample Figure 13.9 shows that Va(Pz — Qz),3zPz + J2Qz in
‘freed up’ paracomplete cases.

13.4 Modal tableaux

The nodes in modal tableau are slightly more complex. Instead of the form
(A o), they have the form (A w o), where w—the world parameter—is
a number (standing in for a particular world in a case), and o is again either @ or
©. To begin a tableau, we start as before, making sure that all the starting nodes
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O-o (O0A  w ®) |06 (0A  w o)
(A 1‘) ) (A z‘ o)

O-® (0A w ®) | -6 (OA w o)
(A z‘ D) (A z‘) o)

Fig. 13.10: Rules for O and ¢

share the same world parameter. (Whichever parameter this is, it’s standing in
for @ in the counterexample we're supposing exists.)

All the previous rules remain as unchanged as possible; they carry along their
world parameter, but don’t use it in any way. In our only two-premise rule—=-
@—we don’t require the world parameters to match; there, the new node inherits
the parameter from the A(t) premise node. We add new rules to deal with O
and ¢; they are given in Figure 13.10. In these rules, v and w can stand in for
any parameter at all, and 7 must be a parameter that doesn’t occur anywhere on
the branch yet. (Thus, v and w behave like ¢ and w in our predicate rules, and i
behaves like a.)

A branch closes when the closure conditions (whichever are in force) are met
by two nodes that share the same world parameter.

13.4.0.2 Ezample In Figure 13.11, a tableau is used to show that OVxz(Px A
Qz) Farpde OFx(Px V Rx). Note that where we introduce the term a, no term
has yet occurred free on the branch, so we introduce a new term via the 3-&
rule.
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(Vz(Pz A Q) 1 @)
(0Fz(Pz V Rz) 1 o)

(Fz(Px Vv Rx; 1 o)
\

(PaV Ra 1 o)

\
(Pa 1

©
(Ra 1 o)
(Vx(Pxz A Qm‘) 1 ®)

(Pa A Qa | 1 ®)

(Pa 1 &
(Qa 1 @)
X

Fig. 13.11: Showing that OVz(Px A Qz) Faspae OFx(Px Vv Rx)
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