
On truth, abnormal worlds, and necessity

Jc Beall∗

1 Introduction

Various semantic theories (e.g., truth, exemplification, and more) are underwritten
by so-called depth-relevant logics. Such logics afford non-trivial theories that en-
joy unrestricted semantic principles (e.g., T-biconditionals, comprehension, etc.).
Standard semantics for such logics are so-called non-normal-worlds semantics,
which add ‘abnormal worlds’ (or ‘non-normal worlds’) to an otherwise standard
possible-worlds framework. (All of these ideas are briefly reviewed below.)

Once worlds (of any sort) are in the picture, questions about other worlds-
involving notions emerge. One issue concerns the addition of standard alethic
modalities—e.g., necessity—into the picture. In this paper, I note that the ad-
dition of such modalities (e.g., necessity, on which I focus here) is not entirely
straightforward. In particular, the problems that motivate the target (depth-
relevant) semantic theories—namely, Curry-paradoxical problems—equally con-
strain the treatment of alethic modalities.1

The paper runs as follows. §2–§3 review Curry’s paradox and its upshot for
target semantic theories. §4 sketches the target (abnormal-worlds) semantics as
background to the main issue. The main issue is discussed in §5 and §6. A solution
to the target problem is given in §7, with §8 giving a few closing remarks.

2 Robust contraction freedom

A lesson commonly drawn from Curry’s paradox is that semantic principles (e.g.,
truth biconditionals, exemplification or comprehension biconditionals, etc.) need

∗I am very grateful for the opportunity to have spoken at Logica 2009. I not only learned a
great deal from the variety of logically relevant talks; I also received valuable feedback on my
paper (which you are now reading) and also on a more general result discussed in a different
(to-appear) paper. I particularly thank the organizers of Logica 2009, whose generosity made my
experience nothing but enjoyable—or, at least, as with the walk through a ‘river’ on a rainy day,
very memorable! Versions (and variations) of this paper also benefited from audiences at the
2009 Australasian Association for Philosophy and Australasian Association for Logic conferences
in Melbourne, Victoria University of Wellington, Auckland University, and the University of
Otago. Thanks to all who gave useful feedback at some stage or other, but particularly to Greg
Restall, Graham Priest, Steve Read, Aaron Cotnoir, Dave Ripley, Ed Mares, Denis Robinson,
Max Cresswell, Josh Parsons, and Charles Pigden.

1I concentrate solely on necessity in this paper. A more general result concerning other
modalities is discussed in a separate paper (Beall, 2009a).
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to be free from various forms of contraction (Meyer, Routley, & Dunn, 1979;
Priest, 2006b; Field, 2008; Beall, 2009b). A simple way of seeing the point is via
a result of Greg Restall’s (1993a).

Let → be a rule-detachable conditional (our target detachable arrow),2 and
let � be a binary connective. Following Restall (1993a), we call � a contracting
connective if all of the following hold.3

A→ B ` A�B (1)

A� (A�B) ` A�B (2)

A, A�B ` B (3)

For Curry-paradoxical reasons, any contracting connective trivializes a (suffi-
ciently expressive) language that enjoys a truth predicate for which all of the
target-arrow biconditionals hold (where ↔ is formed via our target detachable
arrow and conjunction in the usual way):4

Tr(〈A〉)↔ A (4)

To see this, let � be a contracting connective, and ⊥ an explosive sentence (i.e.,
implies all sentences), and let k name the sentence Tr(k) � ⊥, so that we have
the following true identity statement:

k = 〈Tr(k)�⊥〉 (5)

The target (Curry-) instance of (4) is

Tr(〈Tr(k)�⊥〉)↔ Tr(k)�⊥ (6)

From this and our identity (5) we get

Tr(k)↔ Tr(k)�⊥ (7)

Applying (1) to the lrd of (7) yields

Tr(k)� (Tr(k)�⊥) (8)

2By rule-detachable is meant that, according to the given logic (or consequence relation `),
A and A → B jointly imply B, that is, that the argument from from A and A → B to B is valid
(according to the given logic). Henceforth, I use ‘detachable’ just to mean rule-detachable.

I should also note, with respect to notation, that I use the turnstile (throughout) to record the
validity relation; it may be read as implies, so that ‘A ` B’ amounts to the claim that A implies
B or—equivalently—that B is a consequence of A.

3Restall calls it a ‘contracting implication’, but I will avoid this terminology. (Some folks
might worry about whether it’s really an implication or even a conditional or etc., but this is
irrelevant to the current discussion, and so I simply sidestep by using the generic ‘connective’.)

4Think of 〈A〉 as a structural-descriptive name of A (or, if you wish, Gödel codes, or some such
suitable naming device). Also, we assume that conjunction is standard (obeying both Adjunction
and Simplification), that is, A, B ` A ∧B and A ∧B ` A (similarly for B).
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Applying (2), the basic contraction rule, to (8) yields

Tr(k)�⊥ (9)

But, now, (9) and the rld of (7) deliver

Tr(k) (10)

The final blow comes from (3), which, applied to (9) and (10), delivers ⊥, which
implies all sentences. Triviality—everyone’s worst nightmare.

3 The upshot

For convenience, let us call the conditional involved in one’s semantic principles
(e.g., truth biconditionals, exemplification or näıve-membership comprehension,
and so on) a semantic conditional. Let us assume, as I will throughout, that our
semantic conditional is a detachable conditional.5

An immediate upshot of §2 is that, on pain of its being a contracting connec-
tive, one’s semantic conditional—say, the conditional in the truth biconditionals—
cannot satisfy (2). (Letting � be → in (1) and (3) makes the point plain.) The
more general point is that having a non-contracting semantic conditional is not
itself sufficient to avoid Curry problems. What one cannot have is any contracting
connective in the language, lest the resulting semantic theory be trivial (via the
considerations in §2). Following Restall (1993a), we say that a language (or theory
in the given language) is robustly contraction-free just if it is free of a contracting
connective.

4 Abnormal worlds and depth-relevant theories

There are a variety of logics that provide robustly contraction-free semantic the-
ories. My concern here is a family of so-called depth-relevant logics, which have
been used to provide non-trivial semantic theories (Brady, 1989; Priest, 2006a,
2006b; Beall, 2009b).6

The target logics enjoy a possible-worlds semantics called abnormal-worlds se-
mantics or, more commonly, non-normal-worlds semantics.7 The point of this
section is not to sketch the full semantic framework(s) in question, but rather to
sketch just enough of the target framework to raise the main issue of the paper
(concerning the addition of necessity into the mix).

5I myself endorse such a position in (2009b), as do Priest (2006b, 2006a), Field (2008), and
many other theorists. I should note, however, that I have lately come to seriously question this
assumption, but discussion of that topic is for another work (Beall, 20++).

6Though not depth-relevant, the recent theories of Field (2008) and Brady (2006) fall into the
same target family of semantics theories; however, there are serious differences from the target
depth-relevant theories, and I do not discuss the Brady/Field (or their ilk) theories further here.

7Kripke (1965) first invoked non-normal worlds to model weak C. I. Lewis modal systems,
but they’re now useful for other things—epistemic logics, and, on topic here, for conditionals.
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** Parenthetical remark. I should note that my real target semantics are so-called
simplified Routley–Meyer semantics that involve a ternary relation on worlds
(Routley & Meyer, 1973). It is this ternary relation that is invoked to achieve a de-
tachable but contraction-free semantic conditional in some of the target semantic
theories (Priest, 2006b; Beall, 2009b), and in many ways is at the heart of (at least
worlds) semantics for relevant logics (Priest & Sylvan, 1992; Restall, 1993b). But
simply for simplicity here, I present a different, ‘arbitrary-evaluator’ framework
(Routley & Loparić, 1978; Priest, 1992; Beall, 2005). End parenthetical. **

4.1 Abnormal-worlds structures

Although many semantic paradoxes arise only at the predicate–quantifier level,
the main ideas of this paper can be conveyed at the propositional level. So, for
simplicity, we concentrate only on a simple (positive) propositional language with
∧, ∨, and →. (As mentioned above, we can ignore negation. In fact, we can
even ignore conjunction and disjunction for present purposes, but I sketch their
treatment for purposes of comparison with the ‘jumpy’ treatment of the arrow.)

Our (abnormal-worlds) interpretations are much like standard possible-worlds
interpretations except for an additional non-empty set N comprising the nor-
mal worlds of the interpretations. Abnormal-worlds structures are pairs 〈W,N〉,
where W is a non-empty set of worlds (more neutrally, points) and N a non-
empty subset of W. If x ∈ N we call x a normal world (or normal point), and if
x ∈ W \N we call x an abnormal world. (NB: W \N may be empty.)

We let |= be a truth-at-a-point relation, relating sentences to worlds. In par-
ticular, |= may be any subset of W × L (where L comprises our sentences). If
x |= A we say that A is (at least) true at x.8

For present purposes, we say that any abnormal-worlds structure, combined
with a truth-at-a-point relation, is an abnormal-worlds interpretation. (We specify
‘admissible interpretations’ or models below.)

4.2 Models: truth conditions

A characteristic feature of abnormal-worlds semantics is that the truth conditions
for connectives may be ‘jumpy’ or ‘non-uniform’ across types of points: a con-
nective might behave differently—have different truth-at-a-point conditions—at
different types of points. For convenient terminology, we say that a connective is
jumpy or non-uniform iff its truth-at-a-point conditions vary across normal and
abnormal worlds; otherwise, we call the connective uniform. (The distinction will
be clear from the truth conditions for the conditional below.)

Models. In the target semantics, conjunction and disjunction are uniform, but
the target ‘semantic conditional’ is jumpy. In particular, we call any abnormal-
worlds interpretation a model—or, if you like, admissible interpretation—if and

8The parenthetical ‘at least’ flags that the target theories are paraconsistent, allowing sen-
tences to be true and also false at a point. For present purposes, however, we can ignore this
issue—focusing only on a truth-at-a-world relation (ignoring falsity-at-a-point).
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only if it ‘obeys’ the following ‘truth conditions’ for our connectives. (For present
purposes, we can ignore ‘falsity conditions’ for our connectives.)

1. Conjunction:

• Normal or Abnormal: for any x ∈ W

x |= A ∧B iff x |= A and x |= B

2. Disjunction:

• Normal or Abnormal: for any x ∈ W

x |= A ∨B iff x |= A or x |= B

3. Conditional:

• Normal: for any x ∈ N

x |= A→ B iff y 6|= A or y |= B for any y ∈ W

• Abnormal: for any x ∈ W \N

x |= A→ B iff . . . let this be arbitrary!

The foregoing truth conditions are familiar except, perhaps, for the conditional’s
truth-at-a-point conditions at abnormal worlds. At abnormal worlds, the truth
(or semantic status, generally) of A→ B is entirely arbitrary.9

Validity. We define validity only over normal worlds (of all models): the argu-
ment from A1, . . . , An to B is valid iff there’s no normal world of any model at
which each Ai is true but B not.

4.3 Example

Note that the foregoing framework delivers a detachable but non-contracting con-
ditional. Letting ` be our validity relation, we have detachment:

A, A→ B ` B

Suppose, for reductio, that there’s a point x ∈ N at which A and A → B are
true but B untrue (i.e., x 6|= B). Since, by supposition, x |= A → B and x ∈ N ,
there’s no point y ∈ W such that y |= A and y 6|= B, and a fortiori either x 6|= A
or x |= B. Contradiction.

With respect to contraction, we have

A→ (A→ B) 0 A→ B

9I should repeat that, in the target logics, one need not make the conditional’s status arbitrary
at abnormal worlds, but this approach simplifies matters for current discussion. For discussion
of this ‘arbitrary’ approach, see Priest, 1992 and Beall, 2005.
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In particular, let W = {x, y} with N = {x}. Let x 6|= A. In turn, let y |= A and
y 6|= B but y |= A → B. In this model, there’s no point in which A is true but
A → B untrue, and hence, since x is normal, we have x |= A → (A → B). On
the other hand, there is a point at which A is true but B untrue (viz., y, which is
abnormal); and so x 6|= A→ B.

5 Target issue: necessity

While there are a host of philosophical questions that surround the given abnormal-
worlds semantics, my interest here is in a relatively unexplored one: namely, the
addition of necessity into the mix. In what follows, I note that, on pain of gen-
erating a contracting connective (and, hence, trivializing the target theories), a
necessity operator along standard quantifier-over-all-worlds lines must be ‘jumpy’
or non-uniform.

5.1 Uniform, all worlds

Let us assume that we’ve added a unary connective � to be our (broad) necessity
operator (viz., it is necessary that. . . ). One natural thought for truth conditions
is a uniform, all-worlds condition:

• Normal or Abnormal: for any x ∈ W

x |= �A iff y |= A for all y ∈ W

This is the standard idea prevalent in philosophy: namely, that our broad-necessity
operator ranges over all worlds, and (for ‘uniformity’) does as much at all points.
(If we think in terms of an ‘access relation’ on worlds, then the idea is that we have
an equivalence relation on worlds.) The problem with this is that, not surprisingly
(Kripke, 1965), we can now (i.e., in our abnormal -worlds framework) have logical
truths that do not count as necessarily true. For example, one may easily check
that A→ A is logically true (i.e., no countermodel), but there are many worlds (of
many models) at which A→ A is untrue—namely, abnormal worlds. At least on
the surface, this break between alethic necessity and logical truth seems awkward.
On the other hand, perhaps the given break between aletheic necessity and logi-
cal truth—more formally, a failure of Necessitation—is not only what one should
expect in the current (abnormal-worlds) conext; it’s what one should want, since
abnormal-worlds are strange (e.g., A → A can fail to be true!), so strange that
we define validity only over the normal worlds. I will not argue the matter here.

We can allow (if we want) that our broad notion of necessity ought to be as
broad as the universe of points that we recognize, and that if (as we’re supposing)
we recognize abnormal points, then our broad-necessity operator ought to range
(i.e., quantify over) them too. Still, one might (quite reasonably) think that we
have another notion of necessity, namely, one that quantifies only over normal
worlds—the ‘real possibilities’, so to speak. This is the notion of necessity at
issue in this paper.
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5.2 Uniform, all normal worlds

While abnormal worlds might be strange enough to be ‘possibilities’ only in some
very charitable sense, it is natural to take the normal worlds to be the ‘real
possibilities’ involved in our alethic-necessity (or, dually, possibility) claims.

• Normal or Abnormal: for any x ∈ W

x |= �A iff y |= A for all y ∈ N

In short: we take our necessity claims to quantify over all and only the normal
worlds. Not only does this deliver the necessity of all logical truths; it also accom-
modates the general intuition that the abnormal worlds are ‘impossible worlds’
of some sort (Priest, 1992; Caret, 2009), or at any rate that abnormal worlds are
beyond the intended range of our necessity claims.

It is not difficult to see that we also get a lot of standard logical behavior for
the Box. One notable feature is the following lemma (not unfamiliar from the
more standard S5 setting).

• Box Lemma. For any model, �A is true at all worlds or true at none.

Proof. This is fairly clear from the truth conditions for the box. In short:
either A is true at all normal worlds or not. If the former, �A is true
everywhere (by the given truth conditions). If the latter, �A is true nowhere
(by the given truth conditions).

Of course, whether one gets standard S5 interaction between the Box and Diamond
depends on how negation is treated, at least if we’re defining the Diamond in terms
of negation and the Box along standard lines. But this issue is beyond the limited
aims of this paper.

6 Trouble: contracting connective

However natural the uniform-all-normal-worlds account of §5.2 may be, it cannot
be utilized in the target semantic theories. The trouble, in short, is that the
account breeds a contracting connective.

To see the result, let us define a connective ⇒ as follows:

A⇒ B := �(A→ B)

Our defined connective is a contracting connective. To see this, first note a general
lemma concerning the arrow.

• Arrow Lemma. For any model, A→ B is true at some normal world if and
only if it is true at all normal worlds.
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Proof. This is fairly clear from the truth-at-a-normal -point conditions for
the arrow: A → B is true at a normal world if and only if there’s no point
whatsover at which A is true and B untrue. So, A → B is true at some
normal point iff true at all normal points. (Think about the Box in an S5
setting. The situation is the same here when we restrict to normal worlds.)

The conditions for contracting connectives are now met as follows.

1. A→ B ` A⇒ B.

Proof. This follows from the Arrow Lemma and the truth conditions for the
Box. A countermodel would require a normal world at which A→ B is true
but also (to make the conclusion untrue) a normal world at which A → B
is untrue. This contradicts the Arrow Lemma.

2. A⇒ (A⇒ B) ` A⇒ B.

Proof. Suppose that x ∈ N and x |= �(A→ �(A→ B)), in which case, via
the Box’s truth conditions, x |= A→ �(A→ B). Suppose, for reductio, that
x 6|= �(A → B), in which case there’s some y ∈ N such that y 6|= A → B,
and so—via the Arrow’s normal-point conditions—some z ∈ W such that
z |= A and z 6|= B. Now, given that x 6|= �(A → B), the Box Lemma
implies that z 6|= �(A → B). But, then, there’s a point (viz., z) at which
A is true but �(A → B) untrue—a point at which A is true but A ⇒ B
untrue. Hence, by the arrow’s normal-point conditions, x 6|= A→ (A⇒ B).
Contradiction (see initial supposition).

3. A, A⇒ B ` B.

Proof. Let x ∈ N and x |= A and x |= A ⇒ B. For reductio, suppose that
x 6|= B, in which case x 6|= A→ B since there’s a point (viz., x) at which A
is true but B untrue. But this contradicts the supposition that x |= A⇒ B,
which requires that A → B be true at all normal worlds—and, a fortiori,
true at x.

The upshot: we cannot recognize an alethic-necessity operator that uniformly
ranges over only normal worlds. What to do?

7 Solution: jumpy necessity

The solution—at least if (as I’m supposing) we want Necessitation to hold for our
target necessity operator—is to give up on uniformity and treat our Box like we
treat our arrow: namely, as a jumpy or non-uniform connective. And this makes
sense. After all, we first invoked abnormal worlds to free our conditional from
contraction—freedom from feature (2) and its ilk. The conditional (i.e., our basic
arrow) avoids contraction by going on holiday at abnormal worlds: it behaves
differently—indeed, on the simple sketch here, arbitrarily—at abnormal worlds.
(Look again at the countermodel to contraction in §4.3.) The trouble with our



Truth and abnormal necessity 9

uniform, all-normal-worlds approach to the Box is that, because it is uniform,
the arrow, when ‘boxed up’ (so to speak), is forced to behave normally; it is not
allowed to be evaluated in its holiday state. In particular, while A→ B can go on
holiday at abnormal worlds, �(A → B) forces A → B to return (so to speak) to
normal worlds for evaluation, and so our defined arrow A⇒ B never has a point
at which to shake off contraction.

We can skip further metaphor and simply go to a solution. As above, the solu-
tion is to treat our Box as we treat the arrow (our other ‘intensional’ connective):
treat it as a jumpy connective. There are many ways to do this, but the simplest
(though, perhaps, philosophically ugliest) is to again invoke an ‘arbitrary evalu-
ator’ at abnormal points. And to retain Necessitation (i.e., that if A is logically
true, so too is �A), we retain the spirit of our all-normal-worlds condition at (and
only at) normal worlds.

• Normal: for x ∈ N

x |= �A iff y |= A for all y ∈ N

• Abnormal: for x ∈ W \N

x |= �A iff . . . let this be arbitrary!

With this approach, we keep Necessitation.

• Necessitation. If ` A then ` �A.

Proof. This follows immediately from the fact that validity (even for sen-
tences) is defined only over normal worlds: ` A iff x |= A for all x ∈ N in
all models.

Moreover, and for present purposes more importantly, we avoid A⇒ B’s being a
contracting connective—where, again, A⇒ B is �(A→ B).

• A⇒ (A⇒ B) 0 A⇒ B.

Countermodel. The same countermodel to (2) works here. Let W = {x, y}
with N = {x}. Let x 6|= A. Now, let y |= A and y 6|= B but y |= �(A→ B).
[Recall that box claims can be whatever we want at abnormal points.] In
this model, there’s no point at which A is true but A⇒ B untrue, and hence,
since x is normal, we have x |= A → (A ⇒ B). Hence, since x is the sole
normal world, we have x |= �(A→ (A⇒ B)), that is, x |= A⇒ (A⇒ B).
On the other hand, there is a point (viz., y) at which A is true but B untrue;
and so, by the Arrow’s normal-point conditions, x 6|= A→ B. By the Box’s
normal-point conditions, we have that x 6|= �(A→ B), that is, x 6|= A⇒ B.

While there may be other features of necessity that we may want, this non-uniform
or ‘jumpy’, all-normal-worlds approach is at least promising.

** Parenthetical remark. Showing that �(A → B) fails to contract is insuffi-
cient for establishing robust contraction freedom, but for semantic theories in the
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ballpark (Priest, 2006b; Beall, 2009b), a non-triviality result is available. For
example, such theories have one-normal-world models (with all other worlds ab-
normal). So, as Greg Restall (in conversation) noted, �A is vacuously true in
such models (i.e., true at the unique normal world of such models), and so we
have models of the resulting Box-ful semantic theories (with the Box having our
given ‘jumpy’ all-normal-worlds semantics). Of course, what one would like are
natural models of such theories, where not all Box claims are true, and this—at
the time of writing—remains an open problem. [The target sense of ‘natural’ is
imprecise and relative to background philosophical issues concerning the target
semantic notions, but an example of a natural model for a Box-free semantic the-
ory, relative to a particular transparent conception of truth, is presented in my
Spandrels of Truth (2009b), with the model essentially due to Ross Brady, Chris
Mortensen (1995), and Graham Priest.] End parenthetical. **

8 Concluding remarks

Contraction-free logics remain popular (and, I think, promising) routes towards
constructing rich semantic theories. Among such logics are depth-relevant logics,
which enjoy a familiar (though abnormal-) worlds semantics. Little attention has
been put to the issue of adding other philosophically important notions into the
mix, probably because the addition of such operators seemed on the surface to
be straightforward. (This is certainly why I gave the matter little thought until
recently.) It is surprising that there is any issue at all. What this paper shows
is that, while the solution (e.g., §7) is straightforward, care must nonetheless
be taken when adding otherwise very familiar (and philosophically important)
intensional notions into the mix.

** Parenthetical remark. There is a more general result concerning ‘talking about
normal worlds’ from which the present result about necessity (or other modal
notions like Actuality, etc.) follows. I hope to publish the broader result, with
more general discussion, in a larger paper (Beall, 2009a). End parenthetical. **
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